
Experiences with Idiomatic Vibe Coding
Damian Rouson

Computer Languages and Systems Software

International Fortran Conference, November 4-5, 2025

Acknowledgements
The Ancestors

Dr. W. Ervin and Mrs. Vivian Rouson

The Berkeley Lab Fortran Team

Dan Bonachea, Paul Hargrove, Hugh Kadhem, Katherine Rasmussen

Collaborators

Fortran Package Manager: Brad Richardson

Julienne: Katherine Rasmussen, Dan Bonachea, Desvaun Drummond

Fiats: Zhe Bai, Jeremiah Bailey, Baboucarr Dibba, Ethan Gutmann, David Torres, Federica Villani, Kareem Jabbar Weaver,
Jordan Welsman, Yunhao Zhang

LLVM Flang: Kareem Ergawy, Jeff Hammond, Michael Klemm, Jean-Didier Paillex, Etienne Renault

Matcha: David Torres, Dominick Martinez, Joseph Hellmers

MOLE: Jose Castillo, Johnny Corbino, Joseph Hellmers

Sponsors
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,
and Office of Nuclear Physics. This research was supported by the Lawrence Berkeley National Laboratory Laboratory Research and Development

(LDRD) program. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.2

Experiences with Idiomatic Vibe Coding

01
Introduction:
Correctness
checking with
Julienne

02

Methodology:
Vibe coding

04
Results:
Vibe coding
with LLMs

03

Methodology:
Idiomatic vibe
coding

Overview

04
Conclusions

Experiences with Idiomatic Vibe Coding

Fortran Unit-Testing Software

GitHub Data as of 15 May 2025

Experiences with Idiomatic Vibe Coding

Fortran Assertion Utilities

GitHub Data as of 15 May 2025

Experiences with Idiomatic Vibe Coding
https://go.lbl.gov/julienne

Correctness-Checking with Julienne
Unified Idioms for writing

– Unit tests
– Assertions

Support for Fortran 2023 native
parallelism

– Multi-image testing: a collective
reduction detects failure on a
subset of images

– Assertions are pure procedures
as required for invocation inside
a do concurrent construct.

https://go.lbl.gov/julienne

Experiences with Idiomatic Vibe Coding

Julienne Idioms

Experiences with Idiomatic Vibe Coding

String Utilities in Julienne

Experiences with Idiomatic Vibe Coding

An Idiomatic Assertion

Experiences with Idiomatic Vibe Coding

Assertion Output

Experiences with Idiomatic Vibe Coding

A Specimen Test

Experiences with Idiomatic Vibe Coding

Defining A Test Subject

Experiences with Idiomatic Vibe Coding

Describing and Running Tests

Experiences with Idiomatic Vibe Coding

Constructing a Test Diagnosis

Experiences with Idiomatic Vibe Coding

Unit Test Output

Experiences with Idiomatic Vibe Coding

Julienne Compiler Support

Experiences with Idiomatic Vibe Coding

Julienne Use Case: Computational Science

Matcha tracks the stochastic T-cell motions according to multiple distributions of
speeds and angles, accounting for the dependence of speed on the turning angle
and on the previous speed.
T cells must mount a coordinated attack in order to avoid overwhelming the host
tissue.
The study of T-cell/T-cell interactions remains in its infancy [1].
Some communication occurs via secreting soluble mediators, e.g., cytokines and
chemokines.

Matcha models mediator spread via a 3D diffusion equation implemented with
defined operations implemented in pure functions:

A parallel virtual T-cell model.

GASNet-EX

Caffeine
Matcha C

L

M
O

P
I

ER

System Runtime & Memory Technologies

[1] L.F. Uhl and A. Ge ́rard A. “Modes of communication between T cells
and relevance for immune responses.” Int. J. Mol. Sci. 2020, 21, 2674;
doi:10.3390/ijms21082674

Collaborator:
Prof. David Torres
Northern New Mexico College
via Sustainable Research Pathways

Matcha: Motility analysis of T-cell histories in activation

<latexit sha1_base64="AqEPtW9BgsMbe6HCgiAmkki6uq4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJWk+NoIRV24rGAf0NZyM520QyeTMDMRSqgbf8WNC0Xc+hfu/BunaRbaeuDC4Zx7ufceL+JMacf5tnILi0vLK/nVwtr6xuaWvb1TV2EsCa2RkIey6YGinAla00xz2owkhcDjtOENryZ+44FKxUJxp0cR7QTQF8xnBLSRuvZeOxqwrsYX+Bq3BXgc7ss41eyiU3JS4HniZqSIMlS79le7F5I4oEITDkq1XCfSnQSkZoTTcaEdKxoBGUKftgwVEFDVSdIPxvjQKD3sh9KU0DhVf08kECg1CjzTGYAeqFlvIv7ntWLtn3cSJqJYU0Gmi/yYYx3iSRy4xyQlmo8MASKZuRWTAUgg2oRWMCG4sy/Pk3q55J6WTm6Pi5XLLI482kcH6Ai56AxV0A2qohoi6BE9o1f0Zj1ZL9a79TFtzVnZzC76A+vzB27/lZ0=</latexit>

�t = Dr2�
<latexit sha1_base64="4CvL2ojX2auJGJpsULRk4Tp1ZIw=">AAACCnicbVDLS8MwHE59zvmqevQSHYKn2YqvizD04nGCe8BaSpqlW1iahiQVRtnZi/+KFw+KePUv8OZ/Y7oV0c0PAl++3yP5vlAwqrTjfFlz8wuLS8ullfLq2vrGpr213VRJKjFp4IQlsh0iRRjlpKGpZqQtJEFxyEgrHFzn9dY9kYom/E4PBfFj1OM0ohhpIwX2nif6NNDwEnoCSU0Rg7ly9HPTgV1xqs4YcJa4BamAAvXA/vS6CU5jwjVmSKmO6wjtZ/k+zMio7KWKCIQHqEc6hnIUE+VnYysjeGCULowSaQ7XcKz+nshQrNQwDk1njHRfTddy8b9aJ9XRhZ9RLlJNOJ48FKXGXwLzXGCXSoI1GxqCsKTmrxD3kURYm/TKJgR32vIsaR5X3bPq6e1JpXZVxFECu2AfHAIXnIMauAF10AAYPIAn8AJerUfr2Xqz3ietc1YxswP+wPr4BjuNmf4=</latexit>

�t = @�/@t, where

Experiences with Idiomatic Vibe Coding

Problem Domain
Unit cube

Partitioned along one spatial direction

Boundary subdomains (blue rectangular solids)

Internal subdomains (red rectangular solids)

Halos (blue and red planes)

Experiences with Idiomatic Vibe Coding

Target Solution

~46-line separate module procedure

Pure function

Do concurrent with locality specifiers

Array statements

Associate

Experiences with Idiomatic Vibe Coding

Vibe Coding Workflow

Experiences with Idiomatic Vibe Coding

A Vibe Coding Workflow

Experiences with Idiomatic Vibe Coding

Idiomatic Vibe Coding Workflow

Experiences with Idiomatic Vibe Coding

Julienne Tests in Matcha

Point-wise (elemental) comparison of functional and traditional procedural solution.

Steady state solution

Experiences with Idiomatic Vibe Coding

Julienne Tests in Matcha

Concavity test

Experiences with Idiomatic Vibe Coding

Results: Vibe Coding

1. Anthropic Claude 4.0 Sonnet (42-line compile-time error):
a) 1st iteration: compile-time errors (syntax errors in do concurrent and private attributes.
b) 2nd iteration: 2 of 3 tests pass!

3. Google Gemini 2.5 Pro (155-line compile-time error): Exhibited errors from misplaced private and public
attributes and module statements improperly placed after contains, where procedure definitions go. Additional
issues were invalid variable declarations, misused import statements, and undeclared result variables.

5. OpenAI ChatGPT 4.1 (72-line compile-time error): Similar placement errors as Gemini with incorrectly
positioned module statements, invalid variable declaration locations, and invalid cycle statements within do
concurrent.

7. xAI Grok 3 (215-line compile-time error): The most extensive errors, including similar code placement issues,
type resolution errors for symbols like real64 duplicate interface definitions, argument mismatches, and submodule
organization problems.

Experiences with Idiomatic Vibe Coding

Results: Idiomatic Vibe Coding
Anthropic Claude 4.0 Sonnet:

1. Because only Claude provided code that compiled without error during VC, we proceeded to IVC only with Claude.

2. With IVC, Claude produced code that compiled without error after the first prompt, which suggests that the additional

context offered with IVC improved the response.

3. 1st iteration:

a) Code compiled (progress)

b) 1 of 3 tests passed (regression).

4. 2nd iteration:

a) compile-time errors (further regression).

Experiences with Idiomatic Vibe Coding

Conclusions
● Vibe Coding with 4 LLMs

- After 2 iterations, only Claude 4.5 Sonnet produced compilable code.

- Claude code passed 2 of 3 tests.

● Idiomatic Vibe Coding with Claude 4.5 Sonnet

- Code compiles on 1st iteration (progress)

- 1 of 3 tests pass (regression)

- Compile-time errors on 2nd iteration (further regression)

Thank You

28

