© ENERGY
H BERKELEY LAB Office of Science

Bringing Science Solutions to the World

rrrrrr

Experiences with Idiomatic Vibe Coding

Damian Rouson
Computer Languages and Systems Software

International Fortran Conference, November 4-5, 2025




Acknowledgements

The Ancestors

Dr. W. Ervin and Mrs. Vivian Rouson

The Berkeley Lab Fortran Team

Dan Bonachea, Paul Hargrove, Hugh Kadhem, Katherine Rasmussen
Collaborators
Fortran Package Manager: Brad Richardson
Julienne: Katherine Rasmussen, Dan Bonachea, Desvaun Drummond

Fiats: Zhe Bai, Jeremiah Bailey, Baboucarr Dibba, Ethan Gutmann, David Torres, Federica Villani, Kareem Jabbar Weaver,
Jordan Welsman, Yunhao Zhang

LLVM Flang: Kareem Ergawy, Jeff Hammond, Michael Klemm, Jean-Didier Paillex, Etienne Renault
Matcha: David Torres, Dominick Martinez, Joseph Hellmers

MOLE: Jose Castillo, Johnny Corbino, Joseph Hellmers
Sponsors

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,
and Office of Nuclear Physics. This research was supported by the Lawrence Berkeley National Laboratory Laboratory Research and Development
(LDRD) program. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.



Overview

01 02 03
Introduction: Methodology: Methodology:
Corregtnes§ Vibe coding Idiomatic vibe
checking with coding
Julienne

04 04

Results: Conclusions

Vibe coding

with LLMs

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Fortran Unit-Testing Software

Package
Metric Count Package Names (if < 5)
Fortran > 70% 21
Fortran ~ 100% 3 forunittest, Julienne, par-funnel
HEAD age < 12 months 9
Archived (read-only) 1 funit
Organizationally hosted 3 Julienne, pFUnit, test-drive
Releases + tags > 0 11
Contributors > 1 7
Contributors > 5 2 pFUnit, test-drive, veggies
Commits > 100 4 FortUTE, Julienne

pFUnit, veggies

User-defined operators 1 Julienne
Multi-image support 3 Julienne, pFUnit, Garden

GitHub Data as of 15 May 2025

Experiences with Idiomatic Vibe Coding

rrrrrr

H BERKELEY LAB

Bringing Science Solutions to the World



Fortran Assertion Utilities

Metric Package Names
Fortran > 70% Assert, fassert
Fortran = 100% Assert, fassert

HEAD age < 12 months | Assert, fassert
Organizationally hosted Assert

Releases + tags > 0 Assert, assert-fortran-git
Contributors > 1 Assert
Contributors > 5 Assert
Commits > 100 Assert, fassert
Pure procedure support Assert, fassert
Multi-image support Assert

GitHub Data as of 15 May 2025 =

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Correctness-Checking with Julienne

Unified Idioms for writing e s : o
[0 README &[5 License Va

— Unit tests
— Assertions

iii

Contributors 4

a rouson Damian Rouson

o ktras Katherine Rasmussen

& Copilot

* bonachea Dan Bonachea

Deployments 23

Support for Fortran 2023 native e

pa rallelism + 22 deployments
.. . . Julienne: Idiomatic Correctness Checking
— Multi-image testing: a collective for Fortran 2023

H H ® Fortran997% ® C0.3%
red u ct I o n d etects fa I I u re o n a The Julienne framework offers a unified approach to unit testing and runtime assertion

checking. Julienne defines idioms for specifying correctness conditions in a common

s u b s et of i m a g e s way when writing tests that wrap the tested procedures or assertions that

conditionally execute inside procedures to check correctness. Julienne's idioms

center around expressions built from defined operations: a uniquely flexible Fortran

— Assertions are pure procedures B o
- - - - " Julienne supports:
as required for invocation inside R o
xample expressions perand types
a do concurrent constru ct. X .approximates. y .within. tolerance real , double precision

)

https://go.lbl.gov/julienne ﬂ BERKELEY LAB

Bringing Science Solutions to the World

Experiences with Idiomatic Vibe Coding


https://go.lbl.gov/julienne

Julienne Idioms

Supported operand types of the bold operator

Row | Example expressions

1 X .approximates. y .within. tolerance

2 X .approximates. y .withinFraction. tolerance

3 X .approximates. y .withinPercentage. tolerance
4 .all. ([i,]J] .lessThan. k)

5 .all. ([i,]J] .lessThan. [k,m])

6 .all. (i .lessThan. [k,m])

7 (i .lessThan. j) .also. (k .equalsExpected. m)
8 x .lessThan. y

9 x .greaterThan. y

10 i .equalsExpected. j

11 i .isAtLeast. j

12 i .isAtMost. j

13 s .isBefore. t

14 s .isAfter. t

15 (.expect. allocated(A)) // ' (expected an allocated array "A")’

real, double precision

real, double precision

real, double precision
test_diagnosis_t
test_diagnosis_t
test_diagnosis_t
test_diagnosis_t
integer, real, double precision
integer, real, double precision
integer, character, type (c_ptr)
integer, real, double precision
integer, real, double precision
character

character

logical

Experiences with Idiomatic Vibe Coding

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World



String Utilities in Julienne

Example expression Result

s$bracket (), where s=string_t ("abc") string_t (" [abc]")

s%bracket ("_"), where s=string_t ("abc") string_t ("_abc_")

s$bracket ("{","}"), where s=string_t ("abc") string_t ("{abc}")

string_t (2) string_t("2")

string_t(["a", "b", "c"1]) [string_t ("a"), string_t ("b"), string t("c")]
.cat. string_t([9,8,7] string_t ("987")

.csv. string t([1.5,2.0,3.25]) string_ t("1.50000000,2.00000000,3.25000000")
["do", "re", "mi"] .sv. "|" string_t("do|re|mi")

string_t ("ab") // string_t ("cd") string_t ("abcd")

"ab" // string_t ("cd") string_t ("abcd")

string_t ("ab") // "cd" string_t ("abcd")

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



An ldiomatic Assertion

$ cat test/assertion_failure_demo.F90

|#include "julienne-assert-macros.h"

:|program assertion_failure_demo

3 ! Demonstrate a failing idiomatic assertion

" use Jjulienne_m, only : call_julienne_assert_, operator(.equalsExpected.)

: implicit none

6 print '(a)', 'Testing intentional failure of idiomatic assertion:'
call_julienne_assert (2+2 .equalsExpected. 5)

end program

oo

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Assertion Output

w|$ fpm test —--compiler flang-new assertion_failure_demo --flag -DASSERTIONS
n|<build output elided...>

2| Testing intentional failure of idiomatic assertion:

in|Fortran ERROR STOP: Assertion failure at ./test/assertion_failure_demo.F90:7:
ulcall_julienne_assert (2+2 .equalsExpected. 5)

is|expected 5; actual value is 4

s| <ERROR> Execution for object " assertion_failure_demo " returned exit code 1
17| <ERROR> xcmd_runx*:stopping due to failed executions
15| STOP 1

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



A Specimen Test

g type, extends(test_t) :: specimen_test_t
contains
10 procedure, nopass
11 procedure, nopass
12 end type

subject
results

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Defining A Test Subject

pure function subject () result (test_subject)
character (len=:), allocatable :: test_subject
test_subject = 'A specimen'’

end function

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Describing and Running Tests

Experiences with Idiomatic Vibe Coding

function results () result (test_results)

type (specimen_test_t) specimen_test

type (test_result_t), allocatable :: test_results(:)

test_results = specimen_test%run( &
[test_description_t ('doing something', do_something) &
,test_description_t ('checking something', check_something) &
,test_description_t ('skipping something') &

1)

end function

rrrrrr

H BERKELEY LAB

Bringing Science Solutions to the World



Constructing a Test Diagnosis

31 function check_something () result (test_diagnosis)
type (test_diagnosis_t) test_diagnosis
type (specimen_t) specimen
34 test_diagnosis = .all.( &
[22./7., 3.14159] .approximates. specimen%$pi() .within. 0.001 &
) // ' (pi approximation)''
end function

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Unit Test Output

A specimen
passes on doing something.
FAILS on checking something.
4 diagnostics:
expected 3.141592741013 within a tolerance of 0.1000000047497E-02;
actual value is 3.142857074738 (pli approximation)
SKIPS on skipping something.
1 of 3 tests passed. 1 tests were skipped.

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Julienne Compiler Support

Vendor | Compiler Version(s) Tested

GCC gfortran 13.4.0, 14.3.0, 15.1.0
LLVM flang-new | 19, 20.1.8, 21.1.0

NAG nagfor 7.2 Build 7235

Intel ifx 2025.2.1 Build 20250806

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Julienne Use Case: Computational Science

Matcha: Motility analysis of T-cell histories in activation

A parallel virtual T-cell model.

w« Matcha tracks the stochastic T-cell motions according to multiple distributions of
speeds and angles, accounting for the dependence of speed on the turning angle
and on the previous speed.

w T cells must mount a coordinated attack in order to avoid overwhelming the host
tissue.

w The study of T-cell/T-cell interactions remains in its infancy [1].
<« Some communication occurs via secreting soluble mediators, e.g., cytokines and Matcha Co
chemokines. Caffeine

w Matcha models mediator spread via a 3D diffusion equation implemented with
defined operations implemented in pure functions:

Collaborator: ¢t == DV2¢ , Where ¢t = 8gb/5’t

Prof. David Torres
Northern New Mexico College

GASNet-EX £ 7

System Runtime & Memory Technologies

via Sustainable Research Pathways [1]L.F. Uhl and A. Ge'rard A. “Modes of communication between T cells ~
and relevance for immune responses.” Int. J. Mol. Sci. 2020, 21,2674, L
doi:10.3390/ijms21082674 B E R K E L EY LA B

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Problem Domain

=

s Unit cube

=

w Partitioned along one spatial direction

=

w Boundary subdomains (blue rectangular solids)

=

w Internal subdomains (red rectangular solids)

=

w Halos (blue and red planes)

type subdomain_t

private

real, allocatable :: s_(:,:,:)
4 contains
s generic :: operator(.laplacian.) => laplacian
6 procedure, private :: laplacian

! ... lines ommitted
8 end type
9 ! ... lines omitted

interface

1

11 pure module function laplacian(rhs) result(laplacian_rhs
12 implicit none
1

1

class (subdomain_t), intent(in) :: rhs
4 type (subdomain_t) laplacian_rhs
15 end function
16 ! ... lines ommitted

17 end interface

Fig. 2. Excerpted subdomian_t derived type, operator (.laplacian.) generic binding, and laplacian function interface body from the Matcha
repository git tag aiddev-workshop.

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Target Solution

w ~46-line separate module procedure
s Pure function

w Do concurrent with locality specifiers
w Array statements

w Associate

Experiences with Idiomatic Vibe Coding

module pr. ure laplacian
integer i, 3, k
real, allocatable :: halo_west(:,:), halo_east(:,:)

allocate(laplacian_rhs$s_ (my

%, ny, nz))
), rhsts_(1,:,:), me/=1) ! conditio

halo_west = merge (halo_x(west,
i = my_internal _west

y use halo

Compute 1 throughout t
an_phi => laplacian_rhs$s_, inbox => halo_west, phi=>rhsts_)
k=2:nz-1) &

default (none) ared(laplacian_phi, inbox, phi, dx_, dy_, dz_, i) !Fort 018 lo
laplacian_phi (i, j,k) = (inbox(j,k ) 2sphi(i, j, k) + phi(i+l,J ,k ))/dx_s«2 + &

low-x boundary subdomain using non o

(phi(i,3-1,k ) - 24phi(i, i, k) + phi(i ,3+1,k ))/dy_ss+2 + &
(phi(i, 3 ,%x-1) 2+phi(i,j, k) + phi(i ,3 ,ktl))/dz_se2

mput plac gh v
associate(laplacian_phi => laplacian_rhs%s_, phi -
do concur (i=my_internal_west+l:my_internal_ j=2:ny-1, k=2:nz-1)
default (none) shared(laplacian_phi, phi, dx_, dy_, dz_) ! For Y lity sp
laplacian_phi(i,j, k) = (phi(i i k) 24phi(i,3,k) + phi(i+l,J ,k ))/dx_»s2
(phi(i ,3-1,k ) - 2sphi(i,3,k) + phi(i ,3+1,k )} /dy_ss2

(phi(i ,3 ,k-1) 2+phi(i,j, k) + phi(i ,3 ,k+l))/dz_s«s2

halo_east = merge (halo_x({east,:
i = my_internal_east

), rhsts_(my_nx,:,:), me/=num_subdomains} !condit

t ut the h ain using non-all t
ate(laplacian_phi => laplacian_ _east, phi=>rhsts_)
do concurrent (j=2:ny-1, k=2:nz-1) & ! compute L in low-x boundary b
default (none) shared(laplacian_phi, inbox, phi, dx_, dy_, dz_, i) ! F n 2 locality spe
laplacian_phi(i,j, k) = (phi(i-1, ) 2sphi(i,3,k) + inbox( 3 ,k ))/dx_+s2 + &
(phi(i , ) 2sphi(i, 3, k) + phi(i ,3+1,k ))/dy_++2 + &

(phi(i ,3 ,k-1) 2+phi(i,j, k) + phi(i ,3 ,k+1))/dz_+s2

laplacian_rhsis_ -
laplacian_rhs%s_
laplacian_rhs%s_
laplacian_rhs%s_(:,:,nz) =

(me==1) laplacian_rhs%s_(1,:
(me==num_subdomains) laplacian_rhs$s_(my_nx, :
end pro re

rreeer

BERKELEY LAB

Bringing Science Solutions to the World




Vibe Coding Workflow

I. In a Linux or macOS shell, set your present working directory to Matcha’s scripts® directory. Enter the command
./create-single-source-file-programs.sh, which creates a copy of the Matcha test suite and
supporting software stack all concatenated into one file in the following path relative to the project’s root directory:
"./build/single-file-programs/test-suite. F90™.

2. Compile and execute test-suite.F90 to check that the output reports that all tests pass. For example, enter

gfortran ~-fcoarray=single -o test-suite test-suite.FS0
./test-suite

=l

. Use the contents of vibe-coding/README.md” as your prompt to a large language model (LLM).

4. Use an editor to edit the test-suite.F90 lines beginning and ending with module procedure laplacian and
end procedure laplacian, respectively, replacing those lines with the LLM’s response.

. Compile test-suite.F90 as in step 2 again.

6. If the test-suite program doesn’t compile or if running the compiled program doesn’t produce output indicating

that all tests pass, then start over at step 1 but when you reach step 3, edit the prompt as follows:

wn

« Append the previous iteration’s compile-time error message(s) or run-time error message(s) or test output.

» Append the text "Please fix the above errors that were generated by compiling the following candidate solution
to this prompt:”. If the program compiled but runtime errors resulted, replace “compiling” with “running” in
the previous sentence. If the program ran without errors, but tests failed replace “compiling™ with “running”
and replace “errors” with “test failures”.

» Append LLM-generated code from the previous iteration.

@ [.Jscripts
® jvibe-coding/README. md

)

Experiences with Idiomatic Vibe Coding

ﬂ BERKELEY LAB

Bringing Science Solutions to the World



A Vibe Coding Workflow

I. In a Linux or macOS shell, set your present working directory to Matcha’s scripts® directory. Enter the command
./create-single-source-file-programs.sh, which creates a copy of the Matcha test suite and
supporting software stack all concatenated into one file in the following path relative to the project’s root directory:
"./build/single-file-programs/test-suite. F90™.

2. Compile and execute test-suite.F90 to check that the output reports that all tests pass. For example, enter

gfortran ~-fcoarray=single -o test-suite test-suite.FS0
./test-suite

=l

. Use the contents of vibe-coding/README.md” as your prompt to a large language model (LLM).

4. Use an editor to edit the test-suite.F90 lines beginning and ending with module procedure laplacian and
end procedure laplacian, respectively, replacing those lines with the LLM’s response.

. Compile test-suite.F90 as in step 2 again.

6. If the test-suite program doesn’t compile or if running the compiled program doesn’t produce output indicating

that all tests pass, then start over at step 1 but when you reach step 3, edit the prompt as follows:

wn

« Append the previous iteration’s compile-time error message(s) or run-time error message(s) or test output.

» Append the text "Please fix the above errors that were generated by compiling the following candidate solution
to this prompt:”. If the program compiled but runtime errors resulted, replace “compiling” with “running” in
the previous sentence. If the program ran without errors, but tests failed replace “compiling™ with “running”
and replace “errors” with “test failures”.

» Append LLM-generated code from the previous iteration.

@ [.Jscripts
® jvibe-coding/README. md

)

Experiences with Idiomatic Vibe Coding

ﬂ BERKELEY LAB

Bringing Science Solutions to the World



ldiomatic Vibe Coding Workflow

Follow the vibe coding” steps except as described below:

o In your first prompt, attach test-suite. FO0 with the lines from module procedure laplacian to end
procedure laplacianremoved. If the LLM rejects ".F90” file extensions, change the name to “test-suite.txt™.
Append following to the prompt: "Inserting a correct response to this prompt into the subdmodule subdomain_s
and then compiling and running the attached program must generate output indicating that all tests pass.”

« In subsequent iterations, if replacing the laplacian procedure with the LLM’s most recent response leads to compile-
time or runtime errors or if any tests fail, update the test-suite program, replacing laplacian with the most recent
LLM response. Attach the updated program to each prompt.

« In the second bullet of vibe coding step 6, replace the suggested text with "Please fix the above errors that were
generated by compiling the attached program, which contains an incorrect laplacian procedure.” If the program
compiled but runtime errors resulted, replace “compiling™ with "running” in the previous sentence. If the program
ran without errors, but tests failed, replace "compiling” with "running” and replace “errors™ with "test failures”.

« Skip the third bullet in vibe coding step 6 because with idiomatic vibe coding, the complete software stack is
contained in an attachment.

“#vibe-coding

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Julienne Tests in Matcha

1 associate (dt => T%dt_stable (alpha))
do step = 1, steps
T = T + dt % alpha % .laplacian. T
end do
end associate

S

ECIN- T I N

associate (residual => T%values () - T_steady)
test_diagnosis = .all. ((residual .isAtLeast. 0.) .and. (residual .isAtMost. tolerance))

9 end associate

Steady state solution

associate( phi_f => phi_functional (), phi_p => phi_procedural())
associate (L_infinity_norm => maxval (abs(phi_f - phi_p)))
test_diagnosis = .all. (phi_f .approximates. phi_p .within. tolerance)
end associate
end associate

wmoAs W N =

Point-wise (elemental) comparison of functional and traditional procedural solution.

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Julienne Tests in Matcha

associate (geometrical_properties => [ &
internally_zero, constant_away_from_edges, concave_at_faces
,doubly_concave_at_edges, triply_concave_in_corners])

AW N =

5 test_diagnosis test_diagnosis_t( &
6 test_passed all (geometrical_properties) &
: ,diagnostics_string = "expected T,T,T,T,T, actual " // .csv.

8 )

9 end associate

string_t (geometrical_properties) &

Concavity test

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding

Bringing Science Solutions to the World



Results: Vibe Coding

1. Anthropic Claude 4.0 Sonnet (42-line compile-time error):
a) 1stiteration: compile-time errors (syntax errors in do concurrent and private attributes.
b) 2nd iteration: 2 of 3 tests pass!

3. Google Gemini 2.5 Pro (155-line compile-time error): Exhibited errors from misplaced private and public
attributes and module statements improperly placed after contains, where procedure definitions go. Additional
issues were invalid variable declarations, misused import statements, and undeclared result variables.

5. OpenAl ChatGPT 4.1 (72-line compile-time error): Similar placement errors as Gemini with incorrectly
positioned module statements, invalid variable declaration locations, and invalid cycle statements within do
concurrent.

7. xAl Grok 3 (215-line compile-time error): The most extensive errors, including similar code placement issues,
type resolution errors for symbols like real64 duplicate interface definitions, argument mismatches, and submodule
organization problems.

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Results: Idiomatic Vibe Coding

Anthropic Claude 4.0 Sonnet:
1. Because only Claude provided code that compiled without error during VC, we proceeded to IVC only with Claude.

2. With IVC, Claude produced code that compiled without error after the first prompt, which suggests that the additional
context offered with IVC improved the response.
3. 1st iteration:
a) Code compiled (progress)
b) 1 of 3 tests passed (regression).
4. 2nd iteration:

a) compile-time errors (further regression).

)

ﬂ BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Conclusions

e Vibe Coding with 4 LLMs

- After 2 iterations, only Claude 4.5 Sonnet produced compilable code.
- Claude code passed 2 of 3 tests.
e Idiomatic Vibe Coding with Claude 4.5 Sonnet
- Code compiles on 1st iteration (progress)
- 10f 3 tests pass (regression)

- Compile-time errors on 2nd iteration (further regression)

rrrrrr

H BERKELEY LAB

Experiences with Idiomatic Vibe Coding Bringing Science Solutions to the World



Thank You



