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Fortran Unit-Testing Software

GitHub Data as of 15 May 2025
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Fortran Assertion Utilities

GitHub Data as of 15 May 2025
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https://go.lbl.gov/julienne

Correctness-Checking with Julienne
Unified Idioms for writing 

– Unit tests 
– Assertions 

Support for Fortran 2023 native 
parallelism 

– Multi-image testing: a collective 
reduction detects failure on a 
subset of images 

– Assertions are pure procedures 
as required for invocation inside 
a do concurrent construct. 

https://go.lbl.gov/julienne
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Julienne Idioms
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String Utilities in Julienne
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An Idiomatic Assertion
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Assertion Output
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A Specimen Test
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Defining A Test Subject
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Describing and Running Tests
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Constructing a Test Diagnosis
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Unit Test Output
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Julienne Compiler Support
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Julienne Use Case: Computational Science

Matcha tracks the stochastic T-cell motions according to multiple distributions of 
speeds and angles, accounting for the dependence of speed on the turning angle 
and on the previous speed. 
T cells must mount a coordinated attack in order to avoid overwhelming the host 
tissue. 
The study of T-cell/T-cell interactions remains in its infancy [1].  
Some communication occurs via secreting soluble mediators, e.g., cytokines and 
chemokines. 

Matcha models mediator spread via a 3D diffusion equation implemented with 
defined operations implemented in pure functions:

A parallel virtual T-cell model.
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[1] L.F. Uhl and A. Ge ́rard A. “Modes of communication between T cells 
and relevance for immune responses.” Int. J. Mol. Sci. 2020, 21, 2674; 
doi:10.3390/ijms21082674

Collaborator:  
Prof. David Torres 
Northern New Mexico College 
via Sustainable Research Pathways

Matcha: Motility analysis of T-cell histories in activation
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Problem Domain
Unit cube 

Partitioned along one spatial direction 

Boundary subdomains (blue rectangular solids) 

Internal subdomains (red rectangular solids) 

Halos (blue and red planes)
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Target Solution

~46-line separate module procedure 

Pure function 

Do concurrent with locality specifiers 

Array statements 

Associate 
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Vibe Coding Workflow
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A Vibe Coding Workflow
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Idiomatic Vibe Coding Workflow
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Julienne Tests in Matcha

Point-wise (elemental) comparison of functional and traditional procedural solution. 

Steady state solution
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Julienne Tests in Matcha

Concavity test
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Results: Vibe Coding

1. Anthropic Claude 4.0 Sonnet (42-line compile-time error): 
a) 1st iteration: compile-time errors (syntax errors in do concurrent and private attributes.
b) 2nd iteration: 2 of 3 tests pass!

3. Google Gemini 2.5 Pro (155-line compile-time error): Exhibited errors from misplaced private and public 
attributes and module  statements improperly placed after contains, where procedure definitions go. Additional 
issues were invalid variable declarations, misused import statements, and undeclared result variables.

5. OpenAI ChatGPT 4.1 (72-line compile-time error): Similar placement errors as Gemini with incorrectly 
positioned module statements, invalid variable declaration locations, and invalid cycle statements within do 
concurrent.

7. xAI Grok 3 (215-line compile-time error): The most extensive errors, including similar code placement issues, 
type resolution errors for symbols like real64 duplicate interface definitions, argument mismatches, and submodule 
organization problems.
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Results: Idiomatic Vibe Coding 
Anthropic Claude 4.0 Sonnet: 

1. Because only Claude provided code that compiled without error during VC, we proceeded to IVC only with Claude.

2. With IVC, Claude produced code that compiled without error after the first prompt, which suggests that the additional 

context offered with IVC improved the response.

3. 1st iteration:

a) Code compiled (progress)

b) 1 of 3 tests passed (regression). 

4. 2nd iteration: 

a) compile-time errors (further regression). 
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Conclusions
● Vibe Coding with 4 LLMs  

- After 2 iterations, only Claude 4.5 Sonnet produced compilable code. 

- Claude code passed 2 of 3 tests.  

● Idiomatic Vibe Coding with Claude 4.5 Sonnet 

- Code compiles on 1st iteration (progress) 

- 1 of 3 tests pass (regression) 

- Compile-time errors on 2nd iteration (further regression)



Thank You
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