Rob Farmer

What do I mean?

subroutine foo(str)
character(len=:) :: str

write(*,*) str

end subroutine

gfort2py

>>> foo(“Hello World")
Hello World

What's the point?

* Large existing code bases with useful code

* But,

- Can be hard to interact with

- Experiment with and visualise output
* Python's REPL

- Very useful when your not quite sure what your doing

A little background

~ https://github.com/rjfarmer/gfort2py
-~ ~9years old

~ Written in Python & Fortran

~ GPL-2.0 or later

~ Currently on v2.6.2
* 3.0 release in the works

~ Install
* python -m pip install gfort2py

https://github.com/rjfarmer/gfort2py

Design principles

* Minimal to no changes in Fortran code
* Minimal to no changes needed in build system

* Support as many new Fortran features as possible

* Supports only gfortran

How does this all work?

subroutine foo(str)
character(len=:) :: str

write(*,*) str

end subroutine

foo.f90

How does this all work?

module foobar
contains
subroutine foo(str)
character(len=:) :: str

write(*,*) str

end subroutine
end module

foo.f90

gfortran -fPIC -shared f00.f90 -o foo.so
gfortran -dynamiclib foo.f90 -o foo.dylib
gfortran -shared f00.f90 -o foo.dll

>

foobar.mod
foo.so

How does this all work?

>>> import gfort2py as gf

foobarmod >>> x = gf.fFort(“foo.so”,"foorbar.mod”)
foo.so .

>>> x.foo(“Hello World")
Hello World

How does this all work?

>>> import gfort2py as gf

>>> x = gf.fFort(“foo.so”,"foorbar.mod”)
module foobar

real, parameter :: pi=3.14 - >>> print(x.pi)
integer iy 3.14
end module

>>>x.y =1

What's going on?

>>> x = gf.fFort(“foo.so”,"foorbar.mod")

"foorbarmod” » gfModParser - Understand the
Fortran interface

“foo.s0” = Python ctypes - Create C-interface

An aside on mod files

* Modules provide the interface to Fortran code

* Mod files are generated by the compiler and “save” the
data

* Gfortran embeds everything you need to know to interact
with a module

Why bother with mod files?

* They are compiler specific

* Compiler version specific

- Well, ABI level
- Gfortran changed at v15

- Previously the same since v8

* New versions of compiler need development work

Benefits of using the mod file

Fortran source code can be hard to parse

What is the C equivalent?

integer :: X What's the equivalent C type?

Just use iso_c_binding and BIND(c)?
Only works if someone did that from the start

What is the C equivalent?

integer :: X int

What is the C equivalent?

integer(kind=wk) :: x 27

What is the C equivalent?

integer, parameter :: wk = 8
integer(kind=wk) :: x int64

Sure, we shouldn't just assume kind=8 is 8 bytes but advantage of fixing on one compiler is we can embed its assumptions

What is the C equivalent?

use module, only wk=> mykind
integer(kind=wk) :: x

2?7

What is the C equivalent?

use module, only wk=> mykind
integer(kind=wk) :: x

2?7

gfortran -lother -Iother ...

What is the C equivalent?

#ifdef FOO
integer, parameter :: wk=4 ??
#else
integer, parameter :: wk=8
#endif

integer(kind=wk) :: x

Benefits of using the mod file

Lets also quietly ignore things like:

 -fdefault-integer-8
* -finteger-4-integer-8

Benefits of using the mod file

The compiler has done the hard work

Mod files resolve all the issue with
understanding what a object is

At the cost of being tied to 1 compiler
e

The insides of a mod file

GFORTRAN module version '15' created from basic.f9e
)OO 0000000000000 0
)

__convert_i4 i8' '(intrinsic)' '' 1 ((PROCEDURE UNKNOWN-INTENT
UNKNOWN-PROC UNKNOWN UNKNOWN @ @ FUNCTION ELEMENTAL PURE
ARRAY_OUTER_DEPENDENCY) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () 2 () ()
() @ 0)

3 '__convert_r4_i4' '(intrinsic)’ '' 1 ((PROCEDURE UNKNOWN-INTENT
UNKNOWN-PROC UNKNOWN UNKNOWN @ @ FUNCTION ELEMENTAL PURE
ARRAY_OUTER_DEPENDENCY) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () 3 () ()
() @ e)

4 'a_int' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () @ () () ()
@ Q)

5 'a_int_lp' 'basic’' '’ 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
TMPLICIT-SAVE @ @) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () @ () () (
L))

6 'a_int_lp_set' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () @ (
00 ee

7 'a_int _mixed' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () @ (
00 oo

8 'a_int_set' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () ()

() ()ee

Gfortran these are gzipped text files
Gunzip < file.mod > file.txt

Read a bit like lisp
Look for opening “(* and closing “)” for

nesting level

Has things like type, kind, name, array
properties etc

Contains (almost) everything you need

The insides of a mod file

GFORTRAN module version '15' created from basic.f9e
(OO0 000000000000 00~0I0 0
0 0 0)

* Decoding this is non-trivial

* gfModParser
B I SO e o0 B (G e R T] * https://github.com/rjfarmer/gfModParser

ARRAY_OUTER_DEPENDENCY) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () 2 () ()

g) O_?;n'urert_m_izl' '"(intrinsic)® '" 1 ((PROCEDURE UNKNOWN-INTENT ¢ Turns the mOd file into Something useful

UNKNOWN-PROC UNKNOWN UNKNOWN @ @ FUNCTION ELEMENTAL PURE
ARRAY_OUTER_DEPENDENCY) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () 3 () ()
() @ e)

4 'a_int' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () @ () () (

@ Q)

5 'a_int_lp' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
IMPLICIT-SAVE @ @) () (INTEGER 8 @ @ @ INTEGER ()} @ @ () () @ () () ()
)

6 'a_int_lp_set' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 8 @ ® ® INTEGER ()) @ @ () ()

00 ee

7 'a_int_mixed' 'basic’ '' 1 ((VARIABLE UNKMOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () ()

00 oo

§ 'a_int_set' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ ©) () (INTEGER 4 @ @ @ INTEGER ()) @ @ ()

() ()ee

https://github.com/rjfarmer/gfModParser

Other missing piece

* Some things need extra handling

- Hidden arguments for characters
- Returning characters/arrays from functions

- Optional arguments

- Pass by value

Other missing piece

* -fdump-tree-original
- Not needed at runtime but help full when developing

* Generates a .original file

* Helps determine when you need a hidden argument(s)

Other missing piece

character(len=5) function func_ret_str(x)

character(len=5),intent(in) :: x

: 1

void func_ret_str (<@ [nction returns void
character(kind=1)[1:5] & _result, | g Return string and its length prepended
integer(kind=8) .__result, to argument list

character(kind=1)[1:5] & restrict X,

T T ~@mm]\t string and its length appended

to argument list

How to do

Procedures

>>> res = x.myfunc(1)
Result(result=2, args={'x": 1})

‘ >>>print(res.result)

2

integer myfunc(x)

subroutine mysub(x)

>>> res = X.mysub(1)
Result(result=None, args={'x": 1})
>>>print(res.args['x’])

“args” contains all arguments passed in/out

Arrays

>>>x.a = np.array([1,2,3.....])

| Supported
Integer :: a(5), a(N),a(*),a(:) ‘ >>> type(a)

Integer :: a(myfunc(N)+1) numpy.ndarray
Integer, allocatable :: a(’) >>> x.myfunc(np.array([1,2,3.....]1))

Python arrays start at index 0 while Fortran is at 1 (default)

Derived types

>>> bar['x'] =1

Type foo
Integer :: Xx,y,z ‘ >>> type(bar)
End type gfort2py.fDT

>>> x.myfunc(bar)
type(foo) :: bar

>>> x.myfunc({’x:1,'y":2})

On the Python side derived types are dict-like objects

Arrays of derived types

| Supported >>>bar([2,2]['x] = 1
type(foo) :: bar(3,3) ‘ > print(bar[2,2][x]
1

I Not supported (yet)
type(foo), allocatable :: bar(:)

Quadruple precision

real(real128) :: x ‘ Python has no standard

128-bit float

Quadruple precision

>>> import pyquadp as pq

real(real128) :: x
eal(real128) ‘ >>> print(foo.x)

pyquadp.gfloat(1)

https.//github.com/rjfarmer/pyQuadp

Wraps __float128, __complex128, and __int128,
As well as math routines (sin,cos, log etc) from libquadmath

https://github.com/rjfarmer/pyQuadp

Module free mode

>>> fortran = """ >>> x = gf.compile(string=fortran)

subroutine mysub()
] >>> X-Mysub()

end subroutine my sub()

amnn

I'm just making a module for you in the background

* 3.0in development

Support gfortran-15
- Including unsigned type

Allocatable arrays of derived types

Unicode
- selected char _kind('ISO_10646")
* Significant speed-ups as well

How can you help?

* I need Fortran examples

* Many combinations of even simple things need test cases

* Try it on your code and if it doesn’t work open a bug
report.

Summary

* Gfort2py is a simple and easy to use Fortran to Python
interface layer

* Supports many newer Fortran features

* Minimises changes to Fortran code and build system

* https://github.com/rjfarmer/gfort2py

https://github.com/rjfarmer/gfort2py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

