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What do I mean?

subroutine foo(str)
character(len=:) :: str

write(*,*) str

end subroutine

gfort2py

>>> foo(“Hello World")
Hello World




What's the point?

* Large existing code bases with useful code

* But,

- Can be hard to interact with

- Experiment with and visualise output
* Python's REPL

- Very useful when your not quite sure what your doing



A little background

~ https://github.com/rjfarmer/gfort2py
-~ ~9years old

~ Written in Python & Fortran

~ GPL-2.0 or later

~ Currently on v2.6.2
* 3.0 release in the works

~ Install
* python -m pip install gfort2py


https://github.com/rjfarmer/gfort2py

Design principles

* Minimal to no changes in Fortran code
* Minimal to no changes needed in build system

* Support as many new Fortran features as possible

* Supports only gfortran




How does this all work?

subroutine foo(str)
character(len=:) :: str

write(*,*) str

end subroutine

foo.f90



How does this all work?

module foobar
contains
subroutine foo(str)
character(len=:) :: str

write(*,*) str

end subroutine
end module

foo.f90

gfortran -fPIC -shared f00.f90 -o foo.so
gfortran -dynamiclib foo.f90 -o foo.dylib
gfortran -shared f00.f90 -o foo.dll

>

foobar.mod
foo.so




How does this all work?

>>> import gfort2py as gf

foobarmod >>> x = gf.fFort(“foo.so”,"foorbar.mod”)
foo.so .

>>> x.foo(“Hello World")
Hello World




How does this all work?

>>> import gfort2py as gf

>>> x = gf.fFort(“foo.so”,"foorbar.mod”)
module foobar

real, parameter :: pi=3.14 - >>> print(x.pi)
integer iy 3.14
end module

>>>x.y =1




What's going on?

>>> x = gf.fFort(“foo.so”,"foorbar.mod")

"foorbarmod” » gfModParser - Understand the
Fortran interface

“foo.s0” = Python ctypes - Create C-interface




An aside on mod files

* Modules provide the interface to Fortran code

* Mod files are generated by the compiler and “save” the
data

* Gfortran embeds everything you need to know to interact
with a module




Why bother with mod files?

* They are compiler specific

* Compiler version specific

- Well, ABI level
- Gfortran changed at v15

- Previously the same since v8

* New versions of compiler need development work



Benefits of using the mod file

Fortran source code can be hard to parse




What is the C equivalent?

integer :: X What's the equivalent C type?

Just use iso_c_binding and BIND(c)?
Only works if someone did that from the start



What is the C equivalent?

integer :: X int




What is the C equivalent?

integer(kind=wk) :: x 27




What is the C equivalent?

integer, parameter :: wk = 8
integer(kind=wk) :: x int64

Sure, we shouldn't just assume kind=8 is 8 bytes but advantage of fixing on one compiler is we can embed its assumptions



What is the C equivalent?

use module, only wk=> mykind
integer(kind=wk) :: x

2?7




What is the C equivalent?

use module, only wk=> mykind
integer(kind=wk) :: x

2?7

gfortran -lother -Iother ...




What is the C equivalent?

#ifdef FOO
integer, parameter :: wk=4 ??
#else
integer, parameter :: wk=8
#endif

integer(kind=wk) :: x




Benefits of using the mod file

Lets also quietly ignore things like:

 -fdefault-integer-8
* -finteger-4-integer-8




Benefits of using the mod file

The compiler has done the hard work

Mod files resolve all the issue with
understanding what a object is

At the cost of being tied to 1 compiler
e



The insides of a mod file

GFORTRAN module version '15' created from basic.f9e
)OO 0000000000000 0
)

__convert_i4 i8' '(intrinsic)' '' 1 ((PROCEDURE UNKNOWN-INTENT
UNKNOWN-PROC UNKNOWN UNKNOWN @ @ FUNCTION ELEMENTAL PURE
ARRAY_OUTER_DEPENDENCY) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () 2 () ()
() @ 0)

3 '__convert_r4_i4' '(intrinsic)’ '' 1 ((PROCEDURE UNKNOWN-INTENT
UNKNOWN-PROC UNKNOWN UNKNOWN @ @ FUNCTION ELEMENTAL PURE
ARRAY_OUTER_DEPENDENCY) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () 3 () ()
() @ e)

4 'a_int' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () @ () () ()
@ Q)

5 'a_int_lp' 'basic’' '’ 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
TMPLICIT-SAVE @ @) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () @ () () (
L))

6 'a_int_lp_set' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () @ (
00 ee

7 'a_int _mixed' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () @ (
00 oo

8 'a_int_set' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () ()

() ()ee

Gfortran these are gzipped text files
Gunzip < file.mod > file.txt

Read a bit like lisp
Look for opening “(* and closing “)” for

nesting level

Has things like type, kind, name, array
properties etc

Contains (almost) everything you need




The insides of a mod file

GFORTRAN module version '15' created from basic.f9e
(OO0 000000000000 00~0I0 0
0 0 0)

* Decoding this is non-trivial

* gfModParser
B I SO e o0 B (G e R T ] * https://github.com/rjfarmer/gfModParser

ARRAY_OUTER_DEPENDENCY) () (INTEGER 8 @ @ @ INTEGER ()) @ @ () () 2 () ()

g) O_?;n'urert_m_izl' '"(intrinsic)® '" 1 ((PROCEDURE UNKNOWN-INTENT ¢ Turns the mOd file into Something useful

UNKNOWN-PROC UNKNOWN UNKNOWN @ @ FUNCTION ELEMENTAL PURE
ARRAY_OUTER_DEPENDENCY) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () 3 () ()
() @ e)

4 'a_int' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () () @ () () (

@ Q)

5 'a_int_lp' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN
IMPLICIT-SAVE @ @) () (INTEGER 8 @ @ @ INTEGER ()} @ @ () () @ () () ()
)

6 'a_int_lp_set' 'basic' '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 8 @ ® ® INTEGER ()) @ @ () ()

00 ee

7 'a_int_mixed' 'basic’ '' 1 ((VARIABLE UNKMOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ @) () (INTEGER 4 @ @ @ INTEGER ()) @ @ () ()

00 oo

§ 'a_int_set' 'basic’ '' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC
UNKNOWN IMPLICIT-SAVE @ ©) () (INTEGER 4 @ @ @ INTEGER ()) @ @ ()

() ()ee



https://github.com/rjfarmer/gfModParser

Other missing piece

* Some things need extra handling

- Hidden arguments for characters
- Returning characters/arrays from functions

- Optional arguments

- Pass by value




Other missing piece

* -fdump-tree-original
- Not needed at runtime but help full when developing

* Generates a .original file

* Helps determine when you need a hidden argument(s)




Other missing piece

character(len=5) function func_ret_str(x)

character(len=5),intent(in) :: x

: 1

void func_ret_str ( <@ [ nction returns void
character(kind=1)[1:5] & _result, | g Return string and its length prepended
integer(kind=8) .__result, to argument list

character(kind=1)[1:5] & restrict X,

T T ~@mm ]\t string and its length appended

to argument list




How to do .....




Procedures

>>> res = x.myfunc(1)
Result(result=2, args={'x": 1})

‘ >>>print(res.result)

2

integer myfunc(x)

subroutine mysub(x)

>>> res = X.mysub(1)
Result(result=None, args={'x": 1})
>>>print(res.args['x’])

“args” contains all arguments passed in/out



Arrays

>>>x.a = np.array([1,2,3.....])

| Supported
Integer :: a(5), a(N),a(*),a(:) ‘ >>> type(a)

Integer :: a(myfunc(N)+1) numpy.ndarray
Integer, allocatable :: a(’) >>> x.myfunc(np.array([1,2,3.....]1))

Python arrays start at index 0 while Fortran is at 1 (default)



Derived types

>>> bar['x'] =1

Type foo
Integer :: Xx,y,z ‘ >>> type(bar)
End type gfort2py.fDT

>>> x.myfunc(bar)
type(foo) :: bar

>>> x.myfunc({’x:1,'y":2})

On the Python side derived types are dict-like objects



Arrays of derived types

| Supported >>>bar([2,2]['x] = 1
type(foo) :: bar(3,3) ‘ > print(bar[2,2][x]
1

I Not supported (yet)
type(foo), allocatable :: bar(:)




Quadruple precision

real(real128) :: x ‘ Python has no standard

128-bit float




Quadruple precision

>>> import pyquadp as pq

real(real128) :: x
eal(real128) ‘ >>> print(foo.x)

pyquadp.gfloat(1)

https.//github.com/rjfarmer/pyQuadp

Wraps __float128, __complex128, and __int128,
As well as math routines (sin,cos, log etc) from libquadmath


https://github.com/rjfarmer/pyQuadp

Module free mode

>>> fortran = """ >>> x = gf.compile(string=fortran)

subroutine mysub()
] >>> X-Mysub()

end subroutine my sub()

amnn

I'm just making a module for you in the background



* 3.0in development

Support gfortran-15
- Including unsigned type

Allocatable arrays of derived types

Unicode
- selected char _kind('ISO_10646")
* Significant speed-ups as well



How can you help?

* I need Fortran examples

* Many combinations of even simple things need test cases

* Try it on your code and if it doesn’t work open a bug
report.




Summary

* Gfort2py is a simple and easy to use Fortran to Python
interface layer

* Supports many newer Fortran features

* Minimises changes to Fortran code and build system

* https://github.com/rjfarmer/gfort2py



https://github.com/rjfarmer/gfort2py
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