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subroutine foo(str)
    character(len=:) :: str
    
     write(*,*) str

end subroutine

>>> foo(“Hello World”)
Hello World

What do I mean?

gfort2py



What’s the point?

● Large existing code bases with useful code
● But,

– Can be hard to interact with
– Experiment with and visualise output

● Python’s REPL
– Very useful when your not quite sure what your doing



A little background

– https://github.com/rjfarmer/gfort2py
– ~9 years old
– Written in Python & Fortran
– GPL-2.0 or later
– Currently on v2.6.2

● 3.0 release in the works
– Install

● python -m pip install gfort2py

https://github.com/rjfarmer/gfort2py


Design principles

● Minimal to no changes in Fortran code
● Minimal to no changes needed in build system
● Support as many new Fortran features as possible
● Supports only gfortran



How does this all work?

subroutine foo(str)
    character(len=:) :: str
    
     write(*,*) str

end subroutine

foo.f90



How does this all work?

module foobar
contains
    subroutine foo(str)
        character(len=:) :: str
    
        write(*,*) str

    end subroutine
end module

foo.f90

foobar.mod 
foo.so

gfortran -fPIC -shared  foo.f90 -o foo.so
gfortran -dynamiclib foo.f90 -o foo.dylib 

gfortran -shared foo.f90 -o foo.dll 



How does this all work?

foobar.mod 
foo.so

>>> import gfort2py as gf

>>> x = gf.fFort(“foo.so”,”foorbar.mod”)

>>> x.foo(“Hello World”)
Hello World



How does this all work?

>>> import gfort2py as gf

>>> x = gf.fFort(“foo.so”,”foorbar.mod”)

>>> print(x.pi)
3.14

>>> x.y = 1

module foobar
    real, parameter :: pi=3.14
    integer :: y
end module



What’s going on?

>>> x = gf.fFort(“foo.so”,”foorbar.mod”)

”foorbar.mod”   gfModParser  → → Understand the 
Fortran interface 

“foo.so”              Python ctypes   → → Create C-interface



An aside on mod files

● Modules provide the interface to Fortran code
● Mod files are generated by the compiler and “save” the 

data
● Gfortran embeds everything you need to know to interact 

with a module
 



Why bother with mod files?

● They are compiler specific
● Compiler version specific

– Well, ABI level 
– Gfortran changed at v15
– Previously the same since v8

● New versions of compiler need development work



Benefits of using the mod file

Fortran source code can be hard to parse



What is the C equivalent?

integer :: x What’s the equivalent C type?

Just use iso_c_binding and BIND(c)? 
Only works if someone did that from the start



What is the C equivalent?

integer :: x int



What is the C equivalent?

integer(kind=wk) :: x ??



What is the C equivalent?

integer, parameter :: wk = 8 
integer(kind=wk) :: x int64

Sure, we shouldn’t just assume kind=8 is 8 bytes but  advantage of fixing on one compiler is we can embed its assumptions



What is the C equivalent?

use module, only wk=> mykind
integer(kind=wk) :: x ??



What is the C equivalent?

??

gfortran -lother -Iother ...

use module, only wk=> mykind
integer(kind=wk) :: x



What is the C equivalent?

#ifdef FOO
    integer, parameter :: wk=4
#else
    integer, parameter :: wk=8
#endif

integer(kind=wk) :: x

??



Benefits of using the mod file

Lets also quietly ignore things like:

●  -fdefault-integer-8
● -finteger-4-integer-8



Benefits of using the mod file

The compiler has done the hard work

Mod files resolve all the issue with 
understanding what a object is

At the cost of being tied to 1 compiler



The insides of a mod file

● Gfortran these are gzipped text files
● Gunzip < file.mod > file.txt

● Read a bit like lisp
● Look for opening “(“ and closing “)” for 

nesting level
● Has things like type, kind, name, array 

properties etc
● Contains (almost)  everything you need 



The insides of a mod file

● Decoding this is non-trivial

● gfModParser
● https://github.com/rjfarmer/gfModParser
● Turns the mod file into something useful

https://github.com/rjfarmer/gfModParser


Other missing piece

● Some things need extra handling
– Hidden arguments for characters
– Returning characters/arrays from functions
– Optional arguments
– Pass by value  



Other missing piece

● -fdump-tree-original
– Not needed at runtime but help full when developing

● Generates a .original file
● Helps determine when you need a hidden argument(s)



Other missing piece

character(len=5) function func_ret_str(x)

    character(len=5),intent(in) :: x

void func_ret_str (
character(kind=1)[1:5] & __result, 

integer(kind=8) .__result, 
character(kind=1)[1:5] & restrict x, 

integer(kind=8) _x)

Function returns void
Return string and its length prepended 
to argument list

Input string and its length appended 
to argument list



How to do …..



Procedures

integer myfunc(x)

subroutine mysub(x)

>>> res = x.myfunc(1)
 Result(result=2, args={'x': 1})
>>>print(res.result)
2

>>> res = x.mysub(1)
 Result(result=None, args={'x': 1})
>>>print(res.args[‘x’])

“args” contains all arguments passed in/out 



Arrays

! Supported
Integer :: a(5), a(N),a(*),a(:) 
Integer :: a(myfunc(N)+1)
Integer, allocatable :: a(:)

>>> x.a = np.array([1,2,3…..]) 

>>> type(a) 
numpy.ndarray

>>> x.myfunc(np.array([1,2,3…..]))

Python arrays start at index 0 while Fortran is at 1 (default)



Derived types

Type foo
    Integer :: x,y,z
End type

type(foo) :: bar

>>> bar[‘x’] = 1

>>> type(bar)
gfort2py.fDT

>>> x.myfunc(bar)

 >>> x.myfunc({‘x’:1,’y’:2})

On the Python side derived types are dict-like objects 



Arrays of derived types

! Supported
type(foo) :: bar(3,3)

! Not supported (yet)
type(foo), allocatable :: bar(:)

>>> bar[2,2][‘x’] = 1

>>>print(bar[2,2][‘x’])
1



Quadruple precision

real(real128) :: x Python has no standard 
128-bit float



Quadruple precision

real(real128) :: x
>>> import pyquadp as pq

>>> print(foo.x)
pyquadp.qfloat(1)

https://github.com/rjfarmer/pyQuadp

Wraps __float128, __complex128, and __int128,
As well as math routines (sin,cos, log etc) from libquadmath

https://github.com/rjfarmer/pyQuadp


Module free mode

>>> fortran = “””
subroutine mysub()
….
end subroutine my sub()
“””

>>> x = gf.compile(string=fortran)

>>> x.mysub()

I’m just making a module for you in the background



Future

● 3.0 in development
● Support gfortran-15

– Including unsigned type
● Allocatable arrays of derived types
● Unicode

– selected_char_kind('ISO_10646')
● Significant speed-ups as well



How can you help?

● I need Fortran examples
● Many combinations of even simple things need test cases
● Try it on your code and if it doesn’t work open a bug 

report.



Summary

● Gfort2py is a simple and easy to use Fortran to Python 
interface layer

● Supports many newer Fortran features
● Minimises changes to Fortran code and build system
● https://github.com/rjfarmer/gfort2py

https://github.com/rjfarmer/gfort2py
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