
Gfort2py

A fast and easy way to bridge between Python and Fortran

Rob Farmer

subroutine foo(str)
 character(len=:) :: str

 write(*,*) str

end subroutine

>>> foo(“Hello World”)
Hello World

What do I mean?

gfort2py

What’s the point?

● Large existing code bases with useful code
● But,

– Can be hard to interact with
– Experiment with and visualise output

● Python’s REPL
– Very useful when your not quite sure what your doing

A little background

– https://github.com/rjfarmer/gfort2py
– ~9 years old
– Written in Python & Fortran
– GPL-2.0 or later
– Currently on v2.6.2

● 3.0 release in the works
– Install

● python -m pip install gfort2py

https://github.com/rjfarmer/gfort2py

Design principles

● Minimal to no changes in Fortran code
● Minimal to no changes needed in build system
● Support as many new Fortran features as possible
● Supports only gfortran

How does this all work?

subroutine foo(str)
 character(len=:) :: str

 write(*,*) str

end subroutine

foo.f90

How does this all work?

module foobar
contains
 subroutine foo(str)
 character(len=:) :: str

 write(*,*) str

 end subroutine
end module

foo.f90

foobar.mod
foo.so

gfortran -fPIC -shared foo.f90 -o foo.so
gfortran -dynamiclib foo.f90 -o foo.dylib

gfortran -shared foo.f90 -o foo.dll

How does this all work?

foobar.mod
foo.so

>>> import gfort2py as gf

>>> x = gf.fFort(“foo.so”,”foorbar.mod”)

>>> x.foo(“Hello World”)
Hello World

How does this all work?

>>> import gfort2py as gf

>>> x = gf.fFort(“foo.so”,”foorbar.mod”)

>>> print(x.pi)
3.14

>>> x.y = 1

module foobar
 real, parameter :: pi=3.14
 integer :: y
end module

What’s going on?

>>> x = gf.fFort(“foo.so”,”foorbar.mod”)

”foorbar.mod” gfModParser → → Understand the
Fortran interface

“foo.so” Python ctypes → → Create C-interface

An aside on mod files

● Modules provide the interface to Fortran code
● Mod files are generated by the compiler and “save” the

data
● Gfortran embeds everything you need to know to interact

with a module

Why bother with mod files?

● They are compiler specific
● Compiler version specific

– Well, ABI level
– Gfortran changed at v15
– Previously the same since v8

● New versions of compiler need development work

Benefits of using the mod file

Fortran source code can be hard to parse

What is the C equivalent?

integer :: x What’s the equivalent C type?

Just use iso_c_binding and BIND(c)?
Only works if someone did that from the start

What is the C equivalent?

integer :: x int

What is the C equivalent?

integer(kind=wk) :: x ??

What is the C equivalent?

integer, parameter :: wk = 8
integer(kind=wk) :: x int64

Sure, we shouldn’t just assume kind=8 is 8 bytes but advantage of fixing on one compiler is we can embed its assumptions

What is the C equivalent?

use module, only wk=> mykind
integer(kind=wk) :: x ??

What is the C equivalent?

??

gfortran -lother -Iother ...

use module, only wk=> mykind
integer(kind=wk) :: x

What is the C equivalent?

#ifdef FOO
 integer, parameter :: wk=4
#else
 integer, parameter :: wk=8
#endif

integer(kind=wk) :: x

??

Benefits of using the mod file

Lets also quietly ignore things like:

● -fdefault-integer-8
● -finteger-4-integer-8

Benefits of using the mod file

The compiler has done the hard work

Mod files resolve all the issue with
understanding what a object is

At the cost of being tied to 1 compiler

The insides of a mod file

● Gfortran these are gzipped text files
● Gunzip < file.mod > file.txt

● Read a bit like lisp
● Look for opening “(“ and closing “)” for

nesting level
● Has things like type, kind, name, array

properties etc
● Contains (almost) everything you need

The insides of a mod file

● Decoding this is non-trivial

● gfModParser
● https://github.com/rjfarmer/gfModParser
● Turns the mod file into something useful

https://github.com/rjfarmer/gfModParser

Other missing piece

● Some things need extra handling
– Hidden arguments for characters
– Returning characters/arrays from functions
– Optional arguments
– Pass by value

Other missing piece

● -fdump-tree-original
– Not needed at runtime but help full when developing

● Generates a .original file
● Helps determine when you need a hidden argument(s)

Other missing piece

character(len=5) function func_ret_str(x)

 character(len=5),intent(in) :: x

void func_ret_str (
character(kind=1)[1:5] & __result,

integer(kind=8) .__result,
character(kind=1)[1:5] & restrict x,

integer(kind=8) _x)

Function returns void
Return string and its length prepended
to argument list

Input string and its length appended
to argument list

How to do …..

Procedures

integer myfunc(x)

subroutine mysub(x)

>>> res = x.myfunc(1)
 Result(result=2, args={'x': 1})
>>>print(res.result)
2

>>> res = x.mysub(1)
 Result(result=None, args={'x': 1})
>>>print(res.args[‘x’])

“args” contains all arguments passed in/out

Arrays

! Supported
Integer :: a(5), a(N),a(*),a(:)
Integer :: a(myfunc(N)+1)
Integer, allocatable :: a(:)

>>> x.a = np.array([1,2,3…..])

>>> type(a)
numpy.ndarray

>>> x.myfunc(np.array([1,2,3…..]))

Python arrays start at index 0 while Fortran is at 1 (default)

Derived types

Type foo
 Integer :: x,y,z
End type

type(foo) :: bar

>>> bar[‘x’] = 1

>>> type(bar)
gfort2py.fDT

>>> x.myfunc(bar)

 >>> x.myfunc({‘x’:1,’y’:2})

On the Python side derived types are dict-like objects

Arrays of derived types

! Supported
type(foo) :: bar(3,3)

! Not supported (yet)
type(foo), allocatable :: bar(:)

>>> bar[2,2][‘x’] = 1

>>>print(bar[2,2][‘x’])
1

Quadruple precision

real(real128) :: x Python has no standard
128-bit float

Quadruple precision

real(real128) :: x
>>> import pyquadp as pq

>>> print(foo.x)
pyquadp.qfloat(1)

https://github.com/rjfarmer/pyQuadp

Wraps __float128, __complex128, and __int128,
As well as math routines (sin,cos, log etc) from libquadmath

https://github.com/rjfarmer/pyQuadp

Module free mode

>>> fortran = “””
subroutine mysub()
….
end subroutine my sub()
“””

>>> x = gf.compile(string=fortran)

>>> x.mysub()

I’m just making a module for you in the background

Future

● 3.0 in development
● Support gfortran-15

– Including unsigned type
● Allocatable arrays of derived types
● Unicode

– selected_char_kind('ISO_10646')
● Significant speed-ups as well

How can you help?

● I need Fortran examples
● Many combinations of even simple things need test cases
● Try it on your code and if it doesn’t work open a bug

report.

Summary

● Gfort2py is a simple and easy to use Fortran to Python
interface layer

● Supports many newer Fortran features
● Minimises changes to Fortran code and build system
● https://github.com/rjfarmer/gfort2py

https://github.com/rjfarmer/gfort2py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

