
Compile-time unit checking
in Fortran with genunits

Ben Trettel

FortranCon 2025
2025-11-05

1 / 16

Why check units in Fortran code?
Bugs
▶ Bugs in operations: The operation 1 kg + 1 m is
meaningless and indicates there is a bug.

▶ Bugs in procedure arguments: You shouldn’t pass in
a kg when a m is expected.

▶ Unit checking identifies the location of bugs.
▶ Oracles sometimes don’t exist or are a pain.
▶ Redundancy: If a test has bugs, unit checking might
find bugs the test misses.

Documentation
▶ Checking units is enforced documentation, similar to
assertions.

2 / 16

Obtaining genunits

▶ genunits is experimental, incomplete, and you
probably don’t want to use it.

▶ genunits can be obtained here:
<https://github.com/btrettel/flt/>
▶ make FC=compiler_command genunits

3 / 16

Motivation of talk

▶ Unit checking is typically applied to toy problems of
relatively small scale.

▶ I set out to apply compile-time unit checking (to be
discussed) to “production” code for a personal
project and ran into major issues.

▶ This talk summarizes the issues found.
▶ In development code to test genunits:
https://github.com/btrettel/blastersim

▶ Note: The compile-time approach here is not new
and was probably first done by Brad Richardson:
https://gitlab.com/everythingfunctional/quaff

4 / 16

https://github.com/btrettel/blastersim
https://gitlab.com/everythingfunctional/quaff

genunits in action (1/4)
program test_uni ts_pass

use units , only : s i _ length => unit_p10_p00_p00_p00 , &
si_t ime => unit_p00_p00_p10_p00 , &
s i _ ve l o c i t y => unit_p10_p00_m10_p00

imp l i c i t none

type (s i_ length) : : x
type (s i_t ime) : : t
type (s i _ v e l o c i t y) : : v

x%v = 1 . 0
t%v = 1 . 0

v = x / t

pr int * , v

end program test_uni ts_pass

Code is here: http://www.trettel.us/dl/genunits.zip

5 / 16

http://www.trettel.us/dl/genunits.zip

genunits in action (2/4)

Result (passing)
$ gfor t ran uni ts . o test_uni ts_pass . f90 −o test_uni ts_pass
$. / test_uni ts_pass
1.00000000 m/s

6 / 16

genunits in action (3/4)

program t e s t _ un i t s _ f a i l

use units , only : s i _ length => unit_p10_p00_p00_p00 , &
si_t ime => unit_p00_p00_p10_p00

imp l i c i t none

type (s i_ length) : : x , v
type (s i_t ime) : : t

x%v = 1 . 0
t%v = 1 . 0

v = x / t

pr int * , v

end program t e s t _ un i t s _ f a i l

7 / 16

genunits in action (4/4)

Result (failing)
$ gfor t ran uni ts . o t e s t _ un i t s _ f a i l . f90 −o t e s t _ un i t s _ f a i l
t e s t _ un i t s _ f a i l . f90 : 1 3 : 4 :

13 | v = x / t
| 1

Error : Cannot convert TYPE (unit_p10_p00_m10_p00) to TYPE (
unit_p10_p00_p00_p00) at (1)

8 / 16

genunits process

▶ The units module is generated by genunits and is
ideally custom for each program.

▶ The process:
1. An input file defining the base units (example: m, kg,
s) and other configuration is read.

2. genunits generates a set of units fitting the provided
specifications and outputs a Fortran module.

3. The generated module can then be used by Fortran
code.

9 / 16

partial genunits input file
&conf ig
output_ f i l e = ” units50 . f90 ”
base_units = ”m” , ” kg ” , ” s ” , ”K”
type_def in i t ion = ” rea l ”
use_l ine = ” ”
kind_parameter = ” ”
module_name = ” uni ts ”
max_n_units = 50

! m kg s K
min_exponents = −3 .0 , − 1 .0 , −2 .0 , −1 .0
max_exponents = 3 . 0 , 1 . 0 , 2 . 0 , 1 . 0
denominators = 1 , 1 , 1 , 1

debug = . f a l se .

dt io = . true .
sqrt = . true .
cbrt = . f a l se .
square = . true .
i n t r i n s i c s = . true .
/

&seed_unit
labe l = ” un i t l e ss ”
! m kg s K
e = 0 .0 , 0 .0 , 0 .0 , 0 .0
/

10 / 16

The naive generator approach

▶ Naively, units can be generated by creating all
combinations of base units (example: m, kg, s) within
certain exponent ranges.

▶ For example, consider m with an exponent range of -1
to 1 and s with an exponent range of -1 to 1: m−1 ⋅ s−1,
m−1 ⋅ s0, m−1 ⋅ s1, m0 ⋅ s−1, m0 ⋅ s0, m0 ⋅ s1, m1 ⋅ s−1,
m1 ⋅ s0, m1 ⋅ s1

▶ This leads to a large number of unused units and
slower compilation time than necessary.

11 / 16

Compilation time as a function of units
▶ gfortran 13.3.0 vs. nvfortran 25.9
▶ $COMPILER -c -o units.o units.f90
▶ Specific number of procedures not a unique function
of number of units.

▶ Any code using the units module will also compile
slowly.

units procedures gfortran nvfortran
time (s) time (s)

18 455 0.689 29.322
50 2359 3.923 3861.997
100 7983 24.527 —
200 31629 399.098 —

Units modules for this test can be downloaded here:
http://www.trettel.us/dl/genunits.zip

12 / 16

http://www.trettel.us/dl/genunits.zip

genunits iteration process (1/2)

▶ Instead of naively generating all possible units in the
desired range, genunits starts with seed units and
generates a set of units that result from operations
on those seed units.

▶ The seed units are typically the units used in variable
declarations, but other units can be added if
required.
▶ I call units required but not explicitly used
“intermediate units”.

13 / 16

genunits iteration process (2/2)

▶ The generation process is iterative:
1. Create a set of units from the seed units.
2. Next iteration creates new units from operations on
the current set of units. Example: m and s with the
division operator produces m/s.

3. The process is continued until the desired number of
units or iterations are obtained, or no more units are
created.

▶ This process prioritizes the units created, often
reducing compilation time. However, it is not a
panacea as often the number of required units is still
large. And unused units will still appear.

14 / 16

Performance impact: use inlining

▶ At first I thought that the performance impact was
terrible.

▶ However, Walter Spector on the Fortran Discourse
recommended enabling inlining.

▶ A Gauss-Seidel Poisson solver was implemented with
both reals and genunits:
▶ ifx -O2: genunits was 21.3 times as slow
▶ ifx -O2 -flto: genunits was 1.37 times as slow

▶ This slows down compilation more but is worthwhile.

15 / 16

What would I like to see in the future?

▶ Ideas to reduce compilation time without improving
compilers.

▶ Faster compilation of modules with a large number
of types in compilers.

▶ Easier inlining in compilers.
▶ Units implemented in the Fortran standard, and/or a
compiler.
▶ Maybe a directive based approach like Camfort could
be accepted by a compiler if units are not added to
the standard?

16 / 16

Two approaches using derived types (1/2)

Run-time checking: one derived type
▶ Example declaration from PhysUnits:
https://github.com/gpetty/PhysUnits
▶ type(preal) :: radius
▶ radius = 6370.*u_kilometer

▶ Unit checking is done at run-time.
▶ Testing with high code coverage is required to check
units.

▶ Code lines with bugs can be identified from a
backtrace or debugger.

▶ Performance is definitely decreased.

1 / 3

https://github.com/gpetty/PhysUnits

Two approaches using derived types (2/2)

Compile-time checking: many derived types
▶ Example declaration from quaff:
https://gitlab.com/everythingfunctional/quaff
▶ type(length_t) :: distance

▶ Unit checking is done at compile-time.
▶ Testing is not required to check units.
▶ Location of bugs can be identified by a compiler
within a line.

▶ There is still a run-time performance decrease, but
presumably it is less than with run-time checking.

▶ This is the approach genunits takes.

2 / 3

https://gitlab.com/everythingfunctional/quaff

Intermediate units

Variable declarations:
▶ m: 𝑥, 𝑦, 𝑧
▶ m3: 𝑉

𝑉 = 𝑥 ⋅ 𝑦 ⋅ 𝑧

But: 𝑥 ⋅ 𝑦 has units of m2, which does not appear in the
declarations. So defining types for only the units that
appear in the variable declarations is insufficient.
Intermediate units, for example, m2, need to be defined.

3 / 3

	Appendix

