Fortran — What are the options
for accelerated computing?

Hans Pabst (Intel)

Submitted Abstract

* This case studlg/ summarizes the evolution of an existing CUDA code base in
DBCSR and CP2K and the introduction of HIP as well as an OpenCL based
implementation. The offload interface in CP2K is already an evolution of
DBCSR's offload interface and both embrace commonly supported primitives
across stream programming models, i.e., the interface is only a handful of C
functions (and Fortran binding).

* With the introduction of HIP, the idea was extended to limiting the kernel
language to a well-supported (sub-)set of CUDA. For OpenCL this was helpful
too, and work went into raising the limits of the existing implementation in
DBCSR such as an improved auto-tuning infrastructure, generalized kernels
and tuning parameters, supporting all vendors out of the box. The OpenCL
backend was then fully reused within CP2K Molecular Dynamics application.

 The talk closes with a collection of results achieved on current HPC
installations (DBCSR-MM and CP2K-DBM distributed block-sparse matrix
multiplication).

What is accelerated computing?

* FLOPS-intensive (#1) as well as memory-bound code (#2) can
run faster on specialized accelerators, namely GPUs.

* Actual acceleration is subject to the amount of time spent in code
benefiting from these properties (#1 and #2) - Amdahl’s law.

* In case of “discrete” accelerators penalties for copying data
to/from the device(s) apply - Amdahl’s law.

* Atypical range of speedup for one GPU over one CPU (multiple
cores) is about “2..5..10x” (double precision arithmetic).

What is accelerated computing?

* FLOPS-intensive (#1) as well as memory-bound code (#2) can
run faster on specialized accelerators, namely GPUs.

* Actual acceleration is subject to the amount of time spent in code
benefiting from these properties (#1 and #2) - Amdahl’s law.

* In case of “discrete” accelerators penalties for copying data
to/from the device(s) apply - Amdahl’s law.

* Atypical range of speedup for one GPU over one CPU (multiple

cores) is about “\2..5..1 Ox,” (double precision arithmetic).
|
Why accelerated computing?
... of course, we want to bend
this rule of thumb to the max...

Options for accelerated computing

Use libraries with existing Fortran interface, e.g., (Sca-)LAPACK.
- Interface C libraries and C code (ISO_C_BINDING module).
Develop a C and F interface for code for non-C languages.

Write pure Fortran code targeting GPUs directly: OpenMP offload.
- Write C/C++ code targeting GPUs (CUDA/HIP, SYCL, OpenCL).

e Thistalk —> bold options

:FEK- Application Summary —

. CHEMICAL
JACCURACY. -

Main point of CP2K is diversity, i.e., supported levels of theory,
variety of simulations, and emerging systems.

* Levels of theory: DFTB, LDA, GGA, MP2, RPA, semi-empirical methods (AM1,
PM3, PM6, RM1, MNDOQO), and classical force fields (AMBER, CHARMM, ...)

* Simulations: Metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational
analysis, core level spectroscopy, energy minimization, and transition state
optimization using NEB or dimer method

* Emerging: molecular dynamics of biological systems, e.g.,
QM/MM simulation with GROMACS coupled with CP2K

* Workloads: representation of CP2K is not easy; like toolbox or "Swiss Army knife“

* Acceleration: see https://www.cp2k.org/gpu
Focus on library components supporting GPUs . Az
Initial focus on CUDA, later OpenCL and HIP | TREE-WORED

Modern Fortran: standard version rolls forward; F2018 currently. A metaphorical depiction of how to improve
upon the treatment of electron correlation by

Syntax (reformat) as well as conventions checks (AST based analysis), etc. ascending from the Hartree world to the “heaven
Unit- and Regression testing locally, public, and on cloud-based systems of chemical accuracy.”

https://www.archer2.ac.uk/training/courses/210422-gromacs/
https://www.cp2k.org/gpu

:FEK- Application Summary —

. CHEMICAL
JACCURACY. -

Main point of CP2K is diversity, i.e., supported levels of theory,
variety of simulations, and emerging systems.

* Levels of theory: DFTB, LDA, GGA, MP2, RPA, semi-empirical methods (AM1,
PM3, PM6, RM1, MNDOQO), and classical force fields (AMBER, CHARMM, ...)

* Simulations: Metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational
analysis, core level spectroscopy, energy minimization, and transition state
optimization using NEB or dimer method

* Emerging: molecular dynamics of biological systems, e.g.,
QM/MM simulation with GROMACS coupled with CP2K

* Workloads: representation of CP2K is not easy; like toolbox or "Swiss Army knife“

* Acceleration: see https://www.cp2k.org/gpu
Focus on library components supporting GPUs . Az
Initial focus on CUDA, later OpenCL and HIP | TREE-WORED

Modern Fortran: standard version rolls forward; F2018 currently. A metaphorical depiction of how to improve
upon the treatment of electron correlation by

Syntax (reformat) as well as conventions checks (AST based analysis), etc. ascending from the Hartree world to the “heaven
Unit- and Regression testing locally, public, and on cloud-based systems of chemical accuracy.”

https://www.archer2.ac.uk/training/courses/210422-gromacs/
https://www.cp2k.org/gpu

CP2K and DBCSR (Small Matrix Multiplications)

CP2K implements* Density Functional Theory (DFT) Distributed Blocked Compressed Sparse Row
*amongmany other methods Distributed Blocked Cannon Sparse Recursive
! Cluster I_
L P 2 Cannon
R?a:liEy‘- [7%\—;2 + ‘-a(’d) Oi("_") = f,O,-(f_") [- F‘af‘ﬂie"u"""‘ J ! MNode |—
BE un-ves / _(|) &'r' + Vaclna(7)] ot i
(Nobel Prize 1998: Walter Kohn and John A. Pople) [CéR .]
* DFT can be seen as general Eigenvalue problem, which 1]
is solved using the Self-Consistent Field (SCF) iterative [wScheduler J
method A

e Sparsity can be exploited, and ends up with small dense
blocks of natural structure (atoms)

Host Driver ¢

fallback @E
7 = snrranv—| Accelerator
(cuba) (OpencL) (intel MIC)
" Row & Column Process

" | Permutation Grid [DBCSR* |_|brary IS UblqurtOUSly used by many algOI’Itth
in CP2K (not only for DFT)

Recent CPUs (FMA) are doing very well « DBCSR generates matrix batches (“stacks”) of ~1K..30K
small matrix multiplication (accumulation): C+=A*B

* Pictures adapted from Speedup 2012 (Joost VandeVondele) * CP2K’s sparse matrix library: https://dbcsr.cp2k.org/

CP2K and DBCSR (Small Matrix Multiplications)

CP2K implements* Density Functional Theory (DFT) Distributed Blocked Compressed Sparse Row
*among many other methods Distributed Blocked Cannon Sparse Recursive

!Cluster l_
Many methods in CP2K rely on a SpBLAS-like (M,SF,?,EI.::.EE,L) (]
functionality (DBCSR or DBM) and produce .: Mg,ﬁrec
batches of small matrix multiplications. I
(SR)
* DFT can be seen as general Eigenvalue problem, which 1]
is solved using the Self-Consistent Field (SCF) iterative [wScheduler]
method N
e Sparsity can be exploited, and ends up with small dense ’ i (Acc Driver)
blocks of natural structure (atoms) aeec - [Acceierator
N AT T B B R (cuba) (OpencL) (intel MIC) \
:'_‘.’ - ; * " Row & Column 1. i ” | Process (IR . 2
el B3 « DBCSR* library is ubiquitously used by many algorithms
in CP2K (not only for DFT)
* Recent CPUs (FMA) are doing very well « DBCSR generates matrix batches (“stacks”) of ~1K..30K
small matrix multiplication (accumulation): C+=A*B
* Pictures adapted from Speedup 2012 (Joost VandeVondele) * CP2K’s sparse matrix library: https://dbcsr.cp2k.org/

Introduction of GPU Acceleration

Commits over time
Weekly from Jun 24, 2001 to Oct 26, 2025

Commits over time
Weekly from Jun 24, 2001 to Oct 26, 2025

ppgk

2004

2008

2012

2012

June 2014

2016

2016

2020

2020

April 2021

2024

2024

150

=1

o0

SUOLNGUI0)

5
(o)

600
500
400
200
200

100
L s]

SUOIqU0)

Introduction of GPU Acceleration

Commits over time
Weekly from Jun 24, 2001 to Oct 26, 2025

June 2014

150

100

o ___IIIIIIIII|Illl...I||IIllIIII.l|II|-..|I|III|-||_0

2004 2008 2012 2016 2020 2024
\ Idea of DBCSR’s ACC
\\ interface was carried
) _ ~ on in CP2K’s Offload
Commits over time \\ interface.
Weekly from Jun 24, 2001 to Oct 26, 2025 ‘

sk -

2024

600

500

400

200

200

100
| g

2004 2008 2012 2016 2020

SUOLNGUI0)

SUOIqU0)

offloadMemset[Async]
offloadMemcpy[Async]HtoD
offloadMemcpy[Async]DtoH
offloadMemcpyAsyncDtoD
offloadDeviceSynchronize
offloadStreamCreate/Destroy
offloadStreamSynchronize
offloadEventCreate/Destroy
offloadEventSynchronize

offloadEventRecord

offloadStreamWaitEvent
offloadEventQuery
offloadMalloc/Host
offloadFree/Host

... and some more

ACC interface (DBCSR)

* Very similar, but some
differences

* Only base pointers
for device memory
(offsets are separate)

ISO_C_BINDING and Stream Programming

* Introduce a concise set of C
functions for memory allocation,
data transfer, stream and event
creation, synchronization, etc.

* Binding acts as boundary
between science code (Fortran),
and targeting/optimizing for
accelerators

e Stream programming as a library-
based model (beside of writing
actual kernels) takes place in
Fortran code (much like MPI)

FUNCTION offload get device count () &
RESULT (count)

INTEGER :: count

INTERFACE
FUNCTION get device count c() &
BIND (C, name="offload get device count")
IMPORT :: C_INT

INTEGER (KIND=C_INT) :: get device count c
END FUNCTION get device count c
END INTERFACE

count = get device count c()

END FUNCTION offload get device count

OpenCL Overview

* All GPU vendors agree on supporting OpenCL (industry standard)

* Less or more hidden inside of promoted packages, e.g., Intel oneAPI
delivers OpenCL, and so does Nvidia CUDA and AMD ROCm.

* Delivered CL/cl.h can be old (use Linux distro’s “opencl-headers”).
* OpenCL can be compiled “ahead-of-time” (AOT; not common)

* OpenCL most often used “just-in-time” (JIT)
* This contributes to “needs more code” (boiler plate)
* Advantage: no offline compiler needed

* Language: C99/C11 (and C++ via extension)

Batched Multiplication of Small Matrices (SMMs)

IN: array of tasks, array of A- and B-data, IN/OUT: array of C-data

CP2K DBM DBCSR LIBSMM

* A single/unified kernel for all * Asingle kernel for every
combinations of M, N, and K combination of M, N, and K

* Top-level control-flow for * GPU specific (auto-)tuned
cases like “larger M” parameters

* Much leaner code base

What is different from recent BLAS or batched GEMM?
* Array of tasks with a task structure { M, N, K, Offset A, B, C }
« (C-offsets are duplicate indexes in general (data races!)

Performance Results

All code primarily compiled with GNU Fortran

DBM Miniapp (GH200, 1 module) DBM and DBCSR Workloads (GH200, 1 module)
400 500
— 350 334 450
% 302 @, 400
S 300 c
d g 350
G 250 = 300
c w
S 200 o 250
s
2 150 £ 200
= =
5 E 150
£ 100 3
3 S 100
O 50 50
0 0
OpenCL CUDA GW-LS (OpenCL) GW-LS (CUDA) H20-256 (OpenCL) H20-256 (CUDA)

* DBM Miniapp runs a collection * Two real/citable workloads of
of SMMs (different MxNxK); CP2K’s collection exercising
multiple MPI ranks per GPU. DBM and DBCSR.

Conclusion and Call to Action

* To write GPU kernels in Fortran directly, consider compilers with
OpenMP 5 (and later). See also other talks at FortranCon’25.

* To adopt C/C++ backend and kernels, rely on ISO_C_BINDING
* Consider CUDA/HIP, OpenCL or SYCL

* Appropriate choice can balance maintenance and total lines of
code and achieve vendor portable performance
e Stream programming: consider common subset
* Directive based: consider OpenMP 5 as baseline

References

 CP2K Offload Interface
https://github.com/cp2k/cp2k/blob/master/src/offload/offload_runtime.h

* CP2KDBM component
https://github.com/cp2k/cp2k/tree/master/src/dbm

* DBCSR ACC Interface
https://github.com/cp2k/dbcsr/blob/develop/src/acc/acc.h

https://github.com/cp2k/cp2k/blob/master/src/offload/offload_runtime.h
https://github.com/cp2k/cp2k/tree/master/src/dbm
https://github.com/cp2k/dbcsr/blob/develop/src/acc/acc.h

Backup

OpenCL Backend for CP2K and DBCSR

e Serves both CP2K’s Offload as well as DBCSR’s ACC interface

* OpenCL uses cl_mem type instead of raw device pointers

« CUDA/HIP however internally implement a registry of device pointers
* This was implemented for the OpenCL BE in CP2K/DBCSR

* Macros to deliver FP-atomics (normally via cl_ext_float_atomics and
iImplemented by ARM, Intel and Qualcomm)

* AMD: _ builtin_amdgcn_global_atomic_fadd_f64 intrinsics
* Nvidia: PTXinline ASM in OpenCL kernel is used

Plan: OpenCL BE will become an own project (LIBXSTREAM)
e Currently hosted in DBCSR’s repository (DBCSR is mandatory in CP2K)

Application Features (GPU/general)

* DBCSR was developed as part of CP2K and later separated
* GPU features include direct GPU-to-GPU communication
* Sophisticated and extensive code base (Fortran)
* Accelerator interface (ACC): CUDA/HIP and OpenCL

 CP2K offload interface to accelerate more parts of code base

* Here “more parts” means with kernel code in CP2K repository,
e.g., GRID integration and FFT offload

* Distributed Block Matrix (DBM) to replace DBCSR in the future

* Note: Multi-GPU support is generally via MPI

Application Features (OpenCL only)

* Tuned parameters for DBCSR are not required, whereas
CUDA/HIP code-path falls back to CPU with no suitable
parameters (potentially after uploading data to GPU)

* CP2K’s DBM component can act as LIBSMM

* DBCSR’s LIBSMM can act as DBM
* Batch of SMMs must be “pure” (fixed MxNxK)

	Slide 1: Fortran – What are the options for accelerated computing?
	Slide 2: Submitted Abstract
	Slide 3: What is accelerated computing?
	Slide 4: What is accelerated computing?
	Slide 5: Options for accelerated computing
	Slide 6: Application Summary
	Slide 7: Application Summary
	Slide 8: CP2K and DBCSR (Small Matrix Multiplications)
	Slide 9: CP2K and DBCSR (Small Matrix Multiplications)
	Slide 10: Introduction of GPU Acceleration
	Slide 11: Introduction of GPU Acceleration
	Slide 12: Offload Interface
	Slide 13: ISO_C_BINDING and Stream Programming
	Slide 14: OpenCL Overview
	Slide 15: Batched Multiplication of Small Matrices (SMMs) IN: array of tasks, array of A- and B-data, IN/OUT: array of C-data
	Slide 16: Performance Results All code primarily compiled with GNU Fortran
	Slide 17: Conclusion and Call to Action
	Slide 18: References
	Slide 19: Backup
	Slide 20: OpenCL Backend for CP2K and DBCSR
	Slide 21: Application Features (GPU/general)
	Slide 22: Application Features (OpenCL only)

