
Modernizing OpenRadioss

Modernizing OpenRadioss: A Journey Through Three Decades of Fortran Evolution

Olivier Wienholtz, Director Software Development

olivier@altair.com, co-Author & Speaker

Laurent Berenguer, Lead Software Developer HPC

lberenguer@altair.com, co-Author

Marian Bulla, Director OpenRadioss Community

bulla@altair.com, co-Author

mailto:olivier@altair.com
mailto:lberenguer@altair.com

Altair Radioss – Proven Crash & Impact Simulation Software

Large Scale Computing and Parallelization

Aero & DefenseAutomotive & Rail Consumer Goods &

Manufacturing

OpenRadioss – The Open-Source Version of Radioss

Democratize explicit dynamics, build active community and accelerate innovation

Fast growing adoption since then

• 16000+ binary downloads

• 4000+ commits / 14 active contributors

• 400+ discussion topics on forum

• Social Media: LinkedIn, YouTube, webinars, …

• Steering committee / Users Days

Introduced 3 years ago

OpenRadioss.org

© Altair Engineering Inc. Proprietary and Confidential. All rights reserved.

https://github.com/OpenRadioss/OpenRadioss

R&D Collaborations & Partnerships

Universit ies Inst i tutes & Labs Hardware & Software

Providers

Radioss / OpenRadioss
Project started mid 80s with roots in the 70th

Today: High performance Parallel code

• Compute intensive Solver

• Code translates Mathematical equations

• Self-written algorithms / few calls to

Numerical libraries (Blas/Lapack)

• Highly Optimized and vectorized code

• Massive parallel Solvers

• SMP / OpenMP

• DMP / MPI

• Portable Solver

• X86 Linux and Windows

• ARM64 Linux

• 2 millions lines of Fortran code

• ~ 90% Fortran77 Fixed Format files

• ~ 10% Fortran90 Free Format files

• Fortran 90/95 Types for Data structures

• Some C/C++ modules mainly for I/O applications

• Interface to Python for User Code (functions)

OpenRadioss

We continue to use Fortran because

• A lot of working legacy code

• Accessible for our typical contributors: Mechanical Engineer, Matlab background

• Consistent and high performant with only a few guidelines

• Proven reliability and maturity

But C++ contributions are also welcome

Design Constraints

• Performance: High Solver efficiency & parallel performance

• Portability: ARM64, X86-64, Linux, Windows, Compilers (GCC/Gfortran, ArmFlang, AOCC,

Intel OneAPI)

• Bitwise reproducibility: Whatever Parallel run modus: MPI x OpenMP configurations

Reduce Optimizations: avoid use of Multiply-Add (FMA) assembly instructions

Modernization Strategy

Modernization ?

Ongoing efforts for more than 30 Years

• Improve code structure to adapt parallelism needs

• Work on main data structures

Prior to OpenRadioss

• Makefile with self-made dependency creation tool (use of Cygwin on Windows)

• F77 Fixed Format

• F77 Common blocks, Some equivalences, Common variables in Modules

• OpenMP Threadprivate variables in commons

• C preprocessor directives #ifdef for system specific code

➢ Need of code modernization

Modernization strategy: gradual improvements

Data structures

➢ Group arrays and variables in user defined types : reduce argument list in routine call

New files / subroutines : Guidelines from fortran-lang.org (with minor caveats)

➢ Free-form file format, Fortran 95 + selected recent features

• C/Fortran interface : iso_c_bindings

• Intrinsic functions etc…

➢ New subroutines ➔ module

• Forces explicit interface and

compile time errors when argument mismatch

➢ Limit C preprocessor usage: #define ➔parameter

Modernization strategy: gradual improvements

Legacy files: Start refactoring

➢ Equivalences have been removed.

➢ OpenMP Threadprivate variables in common blocs has been removed

➢ Remove COMMON BLOCK : in progress

• Common Blocks defined in include files & shared in multiple routines

• Move them in meaningful types with appropriate arrays

• Some common variables are parameters : transform them into parameters

➢ Rewrite Fortran fixed routines in Fortran Free format

Executable generation:

Porting to CMake

• Simplification of build process : Few 100. lines of CMake

wrt. Thousands Makefile

• Windows native build with Ninja (no need for

Cygwin/MSYS2 or equiv. layer)

• Automatic dependency checker instead of handmade

dependency checker.

• Less duplication because of the variety of compilers

• fpm (Fortran Package Manager) was not mature

enough (lacks mutli-language capabilities)

Executable generation:

Code Quality / Avoiding bugs

Gfortran: Needed for Open sourcing Radioss

• Use of Gfortran capabilities with address sanitizer:

• Find earlier memory related bugs / report to developer is faster

• GCC plugin for minimal static analysis

• argument mismatch on legacy files + other minor checks

• Several Gfortran warnings transformed into errors

➢ Uninitialized variables : -Werror=maybe-uninitialized

Intel OneAPI

• Check bounds and other debug capabilities

Benefits

Code is easier to read and maintain !

• Lower the entry barrier for new contributors

➢ More modern code style is more appealing for our external (non Altair) contributors

➢ Code becomes more readable

➢ Reduce routines argument list make reading more comprehensive.

• Reduce development time: Less time spent in structural tasks

➢ With newly created types : adding members is easier than modifying call tree.

• Working with LLMs gives better results

• Better Code review by LLM (GitHub CoPilot)

➢ Better result with GitHub Co-Pilot review & Pull Request summary

• Iso_c_bindings: cleaner and easier to maintain C/C++ interface

Benefits

Less C processor directives and Fortran Free format :

• Compatibility with FORTITUDE

Improved Code quality on contributions with GCC/Gfortran features

• Compile time error (modules+gcc plugin) / Asan catch on non-regression tests

• Gfortran Warnings moved to errors : Several catches per Week !

Examples : 2/3 catches on uninitialized variables

Caveats

Restricts usage of

Intent(in|out|inout)

• Easy to forget.

• Bug when in a call stack: INTENT(IN) or OUT

and variable is modified

• Different behavior depending on compiler (Gfortran/IntelOneAPI)

Arrays of user-defined type:

Nice to write, but :

• Poor performance: Memory access,

Compute loop may not vectorize

• Memory overhead

➢ Opposite is preferred : Types of Arrays

Legacy Routine 1
INTEGER,INTENT(IN) :: A

Legacy Routine 2
INTEGER :: A

Legacy Routine 2
INTEGER, INTENT(INOUT) :: A

A=A+1

type my_type_

 integer :: var1

 integer :: var2

end type my_type_

…

type(my_type), dimension(number_options) :: my_typed_array

do i=1, number_options

 var=my_typed_array(i)%var1 + my_typed_array(i)%var2

enddo

Restricts usage of

Pointers: performance degradation

• Can be partially mitigated with CONTIGUOUS

• Different behavior depending on compiler

(Gfortran/IntelOneAPI)

MPI: keep #include “mpif.h” instead of use mpi module

• No module compatibility between 2 Gfortran versions

Installed OpenMPI on Linux may no be built with used Gfortran compiler

• Encapsulate MPI calls in routines to limit C preprocessor usage

➢ Kind of homemade mpi module

module compute_head_mod

subroutine compute_head(arrays,n,ibegin)

 integer, intent(in) :: n,ibegin

 type(my_type), intent(inout), TARGET :: arrays

 real(8), dimension(:), pointer, CONTIGUOUS :: acc

 acc => array%in%hierarchy%of%struct

 call compute(acc)

end subroutine compute_head

end module compute_head_mod

Restricts usage of

Polymorphism: One OpenRadioss option uses polymorphism

• Syntax can be confusing for our mechanical contributors,

• Experienced bugs or unexpected behave on some compilers: ifort (now deprecated), armflang.

• Slow down performance : Comparison with C++ (C++ de-virtualize & is ~4x faster)

Blog on polymorphism by Steeve Lionel

https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type

Issues & forums on Stackoverflow

https://stackoverflow.com/questions/26068020/error-if-selector-expression-in-select-type-is-not-a-named-variable-associate

https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type

Conclusion & Wishlist

Conclusion: OpenRadioss will remain Fortran based program !

But Code Modernization is a need for us.

Pragmatic approach: Need drives the refactoring

• Rewrite/Refactor legacy code to F95 free format when working on projects​

• Adopt new feature only when clear benefits

Still a long journey ahead

~ 10 % of our Fortran code base is modernized

Workforce shortage mitigation

• Simple computational kernels, so that non-expert can contribute​: “Basic Fortran”​

• Open to C++ contribution thanks to iso_c_bindings

Wishlist

Simple generic programming for basic types

• lot of code duplication can be avoided​

• Today’s workarounds (Parametrized derived types PDTs, Fypp) not satisfactory​

ISO C binding : Better String / character ​handling

ISO C bindings not ideal for Character:

• Silent truncation / garbage​

• Array of strings (typically one string per line of a file)​

Thank You !

altair.com/Radioss

altair.com/Radiossopenradioss.org

github.com/OpenRadioss

youtube.com/@OpenRadiossCommunity

	Default Section
	Diapositive 1 Modernizing OpenRadioss
	Diapositive 2 Altair Radioss – Proven Crash & Impact Simulation Software
	Diapositive 3 OpenRadioss – The Open-Source Version of Radioss
	Diapositive 4 R&D Collaborations & Partnerships
	Diapositive 5 Radioss / OpenRadioss
	Diapositive 6 OpenRadioss
	Diapositive 7 Modernization Strategy
	Diapositive 8 Modernization ?
	Diapositive 9 Modernization strategy: gradual improvements
	Diapositive 10 Modernization strategy: gradual improvements
	Diapositive 11 Executable generation:
	Diapositive 12 Executable generation:
	Diapositive 13 Benefits
	Diapositive 14 Benefits
	Diapositive 15 Caveats
	Diapositive 16 Restricts usage of
	Diapositive 17 Restricts usage of
	Diapositive 18 Restricts usage of
	Diapositive 19 Conclusion & Wishlist
	Diapositive 20 Conclusion: OpenRadioss will remain Fortran based program !
	Diapositive 21 Wishlist
	Diapositive 22 Thank You !

