- _i._./ e - B\
Three Decadgé of Eortran Evolutlon .

/f\ \ . A \\:_ :

4 ‘ :‘ 5 ‘ \ <

5 1 Laurent Berenguer Lead SoftWare Developer HPC
/ " Iberenguer@altair.cém, co-Author

A Marlan Bulla, Director OperTRadloss Communlty
s kulla@altalrcom co-Author

Olivier Wienholtz, Director Software Development
olivier@altair.com, co-Author & Speaker

mailto:olivier@altair.com
mailto:lberenguer@altair.com

Altair Radioss — Proven Crash & Impact Simulation Software

Automotive & Rail Aero & Defense Consumer Goods &
Manufacturing

Large Scale Computing and Parallelization J\ ALTAIR

OpenRadioss — The Open-Source Version of Radioss
Democratize explicit dynamics, build active community and accelerate innovation

Fast growing adoption since then

* 16000+ binary downloads

* 4000+ commits / 14 active contributors

+ discussion topics on forum

 Lin yYouTube, webinars, ...

ring Z:m'rhﬁixttee / Users Days

https://github.com/OpenRadioss/OpenRadioss

+-0|n e @

<> Code (@ Issues 22 11 Pullrequests 13 C) Discussions @ Actions [Projects [0 wiki @ Security 1+ Insights

=) opentadioss / OpenRadioss Q Type ([to search e

27 OpenRadioss 7 57 Editfins - OUnwatch 24 ~ Y fork 348~ W Sumed 736~

@

¥ mai r © Q +
OpenRadioss is a powerful, industry-
&) mircea-altair . sebastienVilleneuve Acti. BB 8364060 2 mintes sgo) 4117 Commits proven finite element solver for dynamic
i
= O\ ALTAIR

R&D Collaborations & Partnerships

Universities Institutes & Labs Hardware & Software

;@ Providers
E!

fplus

i TEMPLE ')&CVWA"' ArmM gpcerneus Viper

<3y CHALMERS UNIVERSITY Applied Science

Y 7
3 UNIVERSITY OF TECHNOLOGY A
CIMNE® 6 zeca—
el TUT pems P AMDZ
)= ! e

NVIDIA.

der Bundeswehr -
Universitdt LBMc‘v i in t el
Yo U t =y IGK PERFORMANCE COMPUT NG P i
TU) (G:L‘:::: Elffd r" Safra n Tech CENTREDESMATERIAUX \(I(| tware

Grazm

w
1]
=]
o
[
]
]
w
—
o
o

OF A

UNIVERSITY

FH AACHEN

Pekka
Ostfalia Fm TECHNDLOGICAL (InEl PS Stuckert
Universihyici \9, UNIVERSITY f , Consulting
versity of \F3¥ S\ Gapore Fraunho er SIMRIGHT
s

Applied Science

GRveny & Universiry - POP e VORTEX ALSADO

2\ ALTAIR

Explicit FE codes were available in the mid ‘70s (DYNA3D : 1976)

Radioss / Open Rad ioss UCRL-ID-112607 LLNL J. Walter, D. Bellshaw
Project started mid 80s with roots in the 70th WE Hon

CEL
First coupled EL code
LLL, 1964

Today: High performance Parallel code

+ Compute intensive Solver

SAND86-0594
SNL, march 1987

« Code translates Mathematical equations] et

L. Taylor & D. Flanagan

+ Self-written algorithms / few calls to pIscEs

Pisces International

Numerical libraries (Blas/Lapack) San Leandro CA

explicit FVM CFD

* Highly Optimized and vectorized code

- Massive parallel Solvers + 2 millions lines of Fortran code

« ~90% Fortran77 Fixed Format files
« SMP / OpenMP
P « ~10% Fortran90 Free Format files
 DMP / MPI » Fortran 90/95 Types for Data structures

* Portable Solver
« X86 Linux and Windows
« ARM®64 Linux

+ Some C/C++ modules mainly for I/O applications
* Interface to Python for User Code (functions)
J\ ALTAIR

OpenRadioss

We continue to use Fortran because
* Alot of working legacy code
» Accessible for our typical contributors: Mechanical Engineer, Matlab background
« Consistent and high performant with only a few guidelines
* Proven reliability and maturity

But C++ contributions are also welcome

Design Constraints

* Performance: High Solver efficiency & parallel performance

* Portability: ARM64, X86-64, Linux, Windows, Compilers (GCC/Gfortran, ArmFlang, AOCC,
Intel OneAPI)

+ Bitwise reproducibility: Whatever Parallel run modus: MPI x OpenMP configurations
Reduce Optimizations: avoid use of Multiply-Add (FMA) assembly instructions 2\ ALTAIR

Modernization ?

Ongoing efforts for more than 30 Years

* Improve code structure to adapt parallelism needs

* Work on main data structures
Prior to OpenRadioss
* Makefile with self-made dependency creation tool (use of Cygwin on Windows)
* F77 Fixed Format
F77 Common blocks, Some equivalences, Common variables in Modules
* OpenMP Threadprivate variables in commons

« C preprocessor directives #ifdef for system specific code

> Need of code modernization

J\ ALTAIR

Modernization strategy: gradual improvements

Data structures

» Group arrays and variables in user defined types : reduce argument list in routine call

New files / subroutines : Guidelines from fortran-lang.org (with minor caveats)
» Free-form file format, Fortran 95 + selected recent features

* C/Fortran interface : iso_c_bindings

* Intrinsic functions etc...
> New subroutines =» module

* Forces explicit interface and
compile time errors when argument mismatch

» Limit C preprocessor usage: #define =»parameter

J\ ALTAIR

Modernization strategy: gradual improvements

Legacy files: Start refactoring
» Equivalences have been removed.

» OpenMP Threadprivate variables in common blocs has been removed

» Remove COMMON BLOCK : in progress
« Common Blocks defined in include files & shared in multiple routines
* Move them in meaningful types with appropriate arrays

+ Some common variables are parameters : transform them into parameters

> Rewrite Fortran fixed routines in Fortran Free format

J\ ALTAIR

Executable generation:

Porting to CMake

« Simplification of build process : Few 100. lines of CMake
wrt. Thousands Makefile

* Windows native build with Ninja (no need for
Cygwin/MSYS2 or equiv. layer) ek pinnm ressied (RASION .15

+ Automatic dependency checker instead of handmade e
dependency Checker | 7;:;;CMAKEJ-ISVCVRUNTIMEiLIBRARY “MultiThreaded$<$<CONFIG:Debug>:Debug>"

* Less duplication because of the variety of compilers

- fpm (Fortran Package Manager) was not mature
enough (lacks mutli-language capabilities) nable_Language (Fortran)

age (C)
_language (CXX)

J\ ALTAIR

Executable generation:
Code Quality / Avoiding bugs

Gfortran: Needed for Open sourcing Radioss
* Use of Gfortran capabilities with address sanitizer:
* Find earlier memory related bugs / report to developer is faster
* GCC plugin for minimal static analysis
« argument mismatch on legacy files + other minor checks
« Several Gfortran warnings transformed into errors

» Uninitialized variables : -Werror=maybe-uninitialized

Intel OneAPI

* Check bounds and other debug capabilities
J\ ALTAIR

Benefits

Code is easier to read and maintain !

* Lower the entry barrier for new contributors
» More modern code style is more appealing for our external (non Altair) contributors
» Code becomes more readable

» Reduce routines argument list make reading more comprehensive.

Reduce development time: Less time spent in structural tasks

» With newly created types : adding members is easier than modifying call tree.

* Working with LLMs gives better results
Better Code review by LLM (GitHub CoPilot)

» Better result with GitHub Co-Pilot review & Pull Request summary

* Iso_c_bindings: cleaner and easier to maintain C/C++ interface

J\ ALTAIR

Benefits

Less C processor directives and Fortran Free format :
- Compatibility with FORTITUDE

starter/source/materials/eos/hm_read_eos_powderburn.F90:46:7: C092 subroutine not contained within (sub)module or program

uy I !II submodel_mod ../starter/share/modulesl/submodel_mod.F
45 !
ue | / subroutine hm_read_eos_powderburn(iout, pm, ipm, unitab, lsubmodel, imideos, eos_struct, npropm, npropmi,mtag,&
u7 | | eos_tag ,ieos)
|1 ~ Ce92
48 | 1
49 | ! Modules
|
I

50 1

Improved Code quality on contributions with GCC/Gfortran features
« Compile time error (modules+gcc plugin) / Asan catch on non-regression tests

+ Gfortran Warnings moved to errors : Several catches per Week !
Examples : 2/3 catches on uninitialized variables

|
rror: ‘zl4’ may be used uninitialized [-Werror=maybe-uninitialized]
/home/lberenguer/OpenRad1oss/eng1ne/source/boundary conditions/bcs_nrf.F90:140:36:

140 | real(kind=WP) :: X14,6Y14,6Z14 !< [NIN4] vector

2\ ALTAIR

p Caveats

-
i
-

.\ ALTAIR

Restricts usage of

Intent(in|out|inout)
* Easy to forget.

* Bug when in a call stack: INTENT(IN) or OUT

and variable is modified

- Different behavior depending on compiler (Gfortran/IntelOneAPI)

Arrays of user-defined type:
Nice to write, but :

* Poor performance: Memory access,
Compute loop may not vectorize

* Memory overhead

» Opposite is preferred : Types of Arrays

type my_type_
integer :: var1
integer :: var2

end type my_type

type(my_type), dimension(number_options) :: my_typed_array
do i=1, number_options

var=my_typed_array(i)%var1 + my_typed_array(i)%var2
enddo

2\ ALTAIR

module compute _head mod

ReStriCts Usage Of subroutine compate_he_ad(arrays,n,ibegin)

H . i integer, intent(in) :: n,ibegin
Pointers: performance degradation oty tyme). intomt(inont) TARGET : arays
« Can be partially mitigated with CONTIGUOUS

real(8), dimension(:), pointer, :;acc

] . . . acc => array%in%hierarchy%of%struct
- Different behavior depending on compiler call compute(acc)

(Gfortran/IntelOneAPI)

end subroutine compute_head
end module compute_head_mod

MPI: keep #include “mpif.h” instead of use mpi module

* No module compatibility between 2 Gfortran versions
Installed OpenMPI on Linux may no be built with used Gfortran compiler

* Encapsulate MPI calls in routines to limit C preprocessor usage

» Kind of homemade mpi module

2\ ALTAIR

Polymorphism: One OpenRadioss option uses polymorphism

Restricts usage of

Syntax can be confusing for our mechanical contributors,

Experienced bugs or unexpected behave on some compilers: ifort (now deprecated), armflang.

class(base), allocatable :: arr(:)
integer :: status
allocate(extended :: arr(:))
select type (assoc => arr)
type is (extended)
! ok
write(©,*) allocated(arr)
end select
select type (arr)
type is (extended)
! compilation error:
write(6,*) allocated(arr)
end select

Slow down performance : Comparison with C++ (C++ de-virtualize & is ~4x faster)

t1%id
t2%id
ptr => tl
select type
type is
ptr
end select
print *,
ptr => tl
select type
type is
ptr
end select
print »,

(ptr)
(extended)
=> t2

(assoc => ptr)
(extended)
=> t2

, ptr%id

, ptr%id

11

12

Blog on polymorphism by Steeve Lionel

https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type

Issues & forums on Stackoverflow

https://stackoverflow.com/questions/26068020/error-if-selector-expression-in-select-type-is-not-a-named-variable-associate

2\ ALTAIR

https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type
https://stevelionel.com/drfortran/2020/06/30/doctor-fortran-in-not-my-type

p Conclusion & Wishlist

Conclusion: OpenRadioss will remain Fortran based program !

But Code Modernization is a need for us.

Pragmatic approach: Need drives the refactoring
* Rewrite/Refactor legacy code to F95 free format when working on projects

+ Adopt new feature only when clear benefits

Still a long journey ahead

~ 10 % of our Fortran code base is modernized

Workforce shortage mitigation
« Simple computational kernels, so that non-expert can contribute: “Basic Fortran”

* Open to C++ contribution thanks to iso_c_bindings
2\ ALTAIR

Wishlist

Simple generic programming for basic types
* lot of code duplication can be avoided

« Today’s workarounds (Parametrized derived types PDTs, Fypp) not satisfactory

ISO C binding : Better String / character handling
ISO C bindings not ideal for Character:
« Silent truncation / garbage

» Array of strings (typically one string per line of a file)

2\ ALTAIR

2\ ALTAIR
/4

|- p

altair.com/Radioss
altair.com/Radiossopenradioss.org
github.com/OpenRadioss

youtube.com/@OpenRadiossCommunity

Thank You !

2\ ALTAIR

	Default Section
	Diapositive 1 Modernizing OpenRadioss
	Diapositive 2 Altair Radioss – Proven Crash & Impact Simulation Software
	Diapositive 3 OpenRadioss – The Open-Source Version of Radioss
	Diapositive 4 R&D Collaborations & Partnerships
	Diapositive 5 Radioss / OpenRadioss
	Diapositive 6 OpenRadioss
	Diapositive 7 Modernization Strategy
	Diapositive 8 Modernization ?
	Diapositive 9 Modernization strategy: gradual improvements
	Diapositive 10 Modernization strategy: gradual improvements
	Diapositive 11 Executable generation:
	Diapositive 12 Executable generation:
	Diapositive 13 Benefits
	Diapositive 14 Benefits
	Diapositive 15 Caveats
	Diapositive 16 Restricts usage of
	Diapositive 17 Restricts usage of
	Diapositive 18 Restricts usage of
	Diapositive 19 Conclusion & Wishlist
	Diapositive 20 Conclusion: OpenRadioss will remain Fortran based program !
	Diapositive 21 Wishlist
	Diapositive 22 Thank You !

