
A fast and modern and Fortran linter, for automated bug checking,
modernisation and style enforcement.

Liam Pattinson, Peter Hill

Fortitude

Fortran Linters

● Linters are static analysis tools that warn of bug-prone code, suggest
refactors/modernisations, enforce code style, etc.

● Standard part of a modern developer’s toolkit for other languages:

○ Clang-tidy (C++)

○ Ruff/Pylint/flake8/etc… (Python)

○ Clippy (Rust)

○ ESLint (JavaScript)

○ Etc…

● Fortran lacks a ‘go-to’ Free and Open-Source Software (FOSS) solution.

● Existing (free) linters are unmaintained, hard to install/use, and/or
missing features.

Fortitude

● Command-line tool, automates bug
finding, modernisation, and style
enforcement.

● Goes beyond compiler warnings: deters
Fortran anti-patterns and
deprecated/non-portable features.

● Where possible, conforms to community
best-practices.

● Cross-platform, multiple installation
methods.

● Easy to use out-of-the-box.

github.com/PlasmaFAIR/Fortitude

http://github.com/PlasmaFAIR/Fortitude

Key Features

● Rich command line interface, closely
matches Ruff.

● Large and growing number of linter
rules (75 currently, 100+ planned).

● Applies fixes automatically.

● Robust parsing (though pre-processor
creates issues).

● Configurable via settings files
fortitude.toml or fpm.toml.

● Very fast

Linting 43 src/*.f90 files in the GS2 plasma physics code.
https://bitbucket.org/gyrokinetics/gs2

https://bitbucket.org/gyrokinetics/gs2

User Growth

Getting Started
● Installation using pip or using an installer script:

● Can check Fortran files out-of-the-box with a sensible* default ruleset:

* Based on our own observations of common Fortran best practices – this will still be opinionated!

Via pip, all platforms:
pip install fortitude-lint

On macOS and Linux:
curl -LsSf \
 https://github.com/PlasmaFAIR/fortitude/releases/latest/download/fortitude-installer.sh | sh

On Windows:
powershell -c `
"irm https://github.com/PlasmaFAIR/fortitude/releases/latest/download/fortitude-installer.psi | iex"

cd my_fortran_project/
fortitude check # Automatically find files
fortitude check src/ # Check a specific directory or specific files

Getting Started

Getting More Info

● What does C003: ’implicit none’ missing ‘external’ mean?

● The explain command prints rule documentation on the command line.

Rule Filtering
● Rules can be switched on with --select and switched off with --ignore:

● Rules can also be switched off on a line-by-line basis using allow comments:

Using rule/category codes
fortitude check --select=C --ignore=C003

Using full names
fortitude check --select=correctness --ignore=implicit-external-procedures

module my_mod

 ! allow(C003)
 implicit none

...

end module my_mod

Rules

Fixes

● Fortitude can resolve many issues automatically.

● ‘Safe’ fixes will typically correct style issues without changing the meaning of the
code, e.g. replace (\...\) with [...].

● ‘Unsafe’ fixes might change code behaviour. Best applied rule-by-rule and with
strong testing!

Correct any ‘safe’ fixes
fortitude check --fix

Also correct ‘unsafe’ fixes: use with caution!
fortitude check --select=C003 --fix --unsafe-fixes

Configuration

● Project-wide settings can be set via a fortitude.toml or fpm.toml file at the
top-level of your project.

● Allows consistent behaviour when coding on collaborative projects and when using
Fortitude in CI/CD.

fortitude.toml

[check]
extend-exclude = [“examples/”, “test.f90”] # Don’t lint these files/directories
select = [“error”, “correctness”, “modernisation”, “style”] # Include these categories
ignore = [“superfluous-implicit-none”, “missing-intent”] # ...but ignore these rules
preview = true # Use latest (and unstable!) features
line-length = 120 # Use longer max line length

[check.per-file-ignores]
“**/*_lib.f90” = [“default-public-accessibility”] # Ignore rule for certain file patterns

Upcoming

● Language Server Protocol (LSP)
integration for in-editor reporting
and fixes.

● Designed to work alongside FortLS.

● Supported by (Neo)Vim, Emacs,
Helix, Kate, VSCode (via external
plugin).

Roadmap

FORMATTING PREPROCESSOR SEMANTIC INFORMATION

• Currently scanning the
concrete syntax tree (CST)
directly.

• Aiming to add higher layer
of abstraction, make more
information available while
linting.

• Will enable many new linter
rules.

• Automatically format code.

• Correct whitespace,
capitalistion, line breaks,
etc.

• Similar to fprettify,
clang-format, and black.

• Will compliment the linter,
avoid any clashes.

• Currently can’t handle many
uses of the C-preprocessor
using TreeSitter.

• Aiming to preprocess files
ourselves and map all linter
warnings back to the
original code.

• Will require some user
set-up.

• Can expand to other macro
languages (fypp, pFUnit).

Technology

● Implemented in Rust: very fast, safer
than C++/Python/etc, and great
libraries for command line tooling.

● Draws heavily from the Python linter
Ruff, both in inspiration and direct
code reuse.

● Uses TreeSitter to parse Fortran.
Contributed to development of
tree-sitter-fortran:
https://github.com/stadelmanma
/tree-sitter-fortran

https://github.com/stadelmanma/tree-sitter-fortran
https://github.com/stadelmanma/tree-sitter-fortran

CONTACT US

.

github.com/PlasmaFAIR/fortitude

peter.hill@york.ac.ukliam.pattinson@york.ac.uk

