Modern Fortran for Fluid—Structure Simulations
of Cilia and Particles

Divyaprakash

PhD Candidate
Indian Institute of Technology Delhi, India

FortranCon 2025



Motivation

Sensing and transporting particles using artificial cilia is a key challenge in microfluidics and
bio-engineering.

Our Goal: To build a high-fidelity simulation
of this complex, multiphysics system.

This involves coupling:

@ Fluid: A 2D incompressible Navier-Stokes
solver.

e Solids (Cilia): Modeled as flexible
Kirchhoff Rods.

Biological inspiration (e.g., Ovum Transport) e Solids (Particles): Modeled using Finite
Source: Web Elements (FEM).

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 1/14


https://glowing.com/community/topic/2164098/ectopic-pregnancy-is-not-your-fault-or-his-fault

Problem Statement

Develop computational models to understand and mimic cilia-particle interactions.

Ly

S )

i

L

Computational Domain

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 2/14



The Computational Framework

We use the Immersed Boundary Method (IBM) to couple the Fluid and Solid solver

High-Level Solver Architecture

Flud =" Solid
On

; Solver

F

The Core Challenge: How do we build this entire system to be...

Solver |4

e Maintainable: Cleanly separated code (fluid vs. solid).

o Extensible: Easy to add new objects (e.g., capsules, different particles).
o High-Performance: Fast enough for large-scale simulations.

Our Solution: A framework built entirely in Modern Fortran.

Divyaprakash Modern Fortran FSI Solver

FortranCon 2025 3/14



Why Modern Fortran?

Fortran is more than just a "number-crunching” language. Modern features allow for elegant,
robust, and maintainable software design.
We leverage five key features:

@ Modular Programming (MODULE)
For separation of concerns.

@ Object-Oriented Design (TYPE, CDNTAINS)
To represent physical objects cleanly in code.

© Powerful Array Syntax
Built-in matrix/array operations made translating our MATLAB prototype simple.

© Dynamic Memory (ALLOCATABLE)
For flexible, runtime-defined problem sizes.

@ C Interoperability (IS0_C_BINDING)
For GPU acceleration and external libraries.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 4/14



Core Design: Modular Programming

Modules allow us to separate the code by its physical function: fluid, solids, coupling, /0O, etc.

The main program (ibmc.£90) simply composes these modules:

program ibmc
! === Core Physics Modules ---

use mod_pressure, only: generate_laplacian_sparse_constant,
use mod_time, only: advection, diffusion, corrector,
use mod_boundary, only: apply_boundary_channel

use mod_ibm, only: spread_force, interpolate_velocity
! -=—= Object Definition dules ———

use mod_mesh, only: mesh

use fem2d, only: festruct ! Particle type

use mod_cilia, only: cilium ! Cilium type

! --- Helper/Ezternal Modules ——-—
use mod_amgx, only: calculate_pressure_amgx / GPU Solver
use mod_io, only: write_field, write_mesh

!

! -=—- Local wvariables declared here ... —-—-—

type (mesh) it M
type(cilium), allocatable :: cilia(:)
type(festruct), allocatable :: particles(:)

end program ibmc

Divyapi

Modern Fortran FSI Solver

FortranCon 2025

5/14



Object-Oriented Design: Derived Types

We represent physical objects (cilia, particles) as Derived Types. This bundles data (e.g.,

position, force) with behavior (e.g., ‘calculate_forces').

First, we define an abstract base type for all

solids (mod_solid.f90):

and add their own specific logic

module mod_solid
implicit none

type, abstract ::

! ... (common
real (real64),
real (real64),
real (real64),
— Velocity
real(real64)
!

end type solid

solid
data)

allocatable ::
allocatable ::
allocatable ::

::dl

end module mod_solid

(mod_cilia.f90):

Then, Cilia and Particles extend this base type

module mod_cilia
use mod_krod !/ Eztends solt
implicit none

XE(:,:) ! Coords type, extends(krod) :: cilium
fden(:,:) ! Force ! = Data -

() integer(int32) :: NV / I
U(:,:) !

real(real64) :: K, B
real(real64), allocatable ::

contains
! Behavior (Type-Bound P
procedure :: forces

procedure :: moments
!

end type cilium

contains

elemental impure subroutine forces(self,...)
class(cilium), intent(inout) :: self
Divyaprakash Modern Fortran FSI Solver FortranCon 2025

6/14



High-Level Syntax & Compiler-Friendly Code

Fortran’s array-oriented nature extends to derived types, which was critical for moving from a
MATLAB prototype to efficient, compiled code.

1. Elemental Procedures We define our object 2. High-Level Array Calls This allows us to
methods as elemental. This means the call the procedure on an entire array of objects
subroutine is written to act on a scalar object with a clean, MATLAB-like syntax.

(self).

! In main program (ibmc.f90)
type(cilium), allocatable :: cilia(:)
allocate(cilia(ncilia))

elemental impure subroutine forces(self, ftip)
class(cilium), intent(inout) :: self
real(real64), optional, intent(in) :: ftip
! o ..

! This single line...
end subroutine forces call cilia(:)iforces(ftip)

The elemental keyword is a powerful optimization flag. It explicitly states that the forces
calculation for one cilium is independent of all others. This gives the compiler permission to
automatically vectorize or parallelize the resulting loop, leading to significant performance gains.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 7/14



Polymorphism: Writing Generic Solvers

The Problem: Our coupling module (mod_ibm) needs to spread_force from different kinds of
objects (cilia, particles) to the fluid grid. We want to avoid writing duplicate code.

1. Inheritance: Create a Base Type First, we 2. Polymorphism: Use CLASS The

define an abstract base type, solid, which
holds data common to all objects (like position
and force).

spread_force subroutine accepts
class(solid), not type(cilium) or
type(festruct).

module mod_solid
type, abstract :: solid
real(real64), allocatable ::
real(real64), allocatable ::
real(real64), allocatable :: U(:,:) !
< Velocity

real(real64) :: dl

end type solid
end module mod_solid

Our objects then extend this base type.

(Pa

type , extends(solid)

festruct
end type festruct

! In mod_cilia.f90

type, extends(krod)

end type cilium

! In mod_ibm. f90
subroutine spread_force(M, B, Fx, Fy)
class(mesh), intent(in) :: M
! This argu P

class(solid), intent(in out)

real(real64), intent(in out) :: Fx(...), Fy(...)
i common
Lx = B(irod)%XE(inp,1)

Flx = B(irod)%fden(inp,1) * B(irod)%dl

end subroutine spread_force

This allows the same function to be called with
different object arrays

! In main program (ibmc.
call spread force(M, particles, Fx, Fy)
call spread_force(M, cilia, Fx, Fy)

Modern Fortran FSI Solver FortranCon 2025

8/14



The Payoff: A Clean Main Loop

The Object-Oriented design makes the main program (ibmc.£90) read like the algorithm,
hiding the complexity inside each object’s methods.

! (Inside main loop...)

!I' 1. Calculate internal forces for all solid objects

! This %s a "polymorphic" call on the object arrays
call particles(:)Y%calculate_forces()

call cilia(:)%forces(ftip)

! 2. Spread forces from objects to the fluid grid (IBM)

Fx = 0.0d0; Fy = 0.0d0

! Note: spread_force takes 'class(solid), allocatable :: B(:)'
call spread_force(M, particles, Fx, Fy)

call spread_force(M, cilia, Fx, Fy)

! 3. Solve Flutd (Advection, Diffusion, Pressure-Project)
call advection(M,u,v,au,av)

call calculate_pressure_amgx(A,P,R,init_status)
call corrector(M,u,v,us,vs,P,rho,dt)

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 9/14



Performance: Fortran-C Interoperability

The bottleneck is solving the pressure Poisson equation (Ax = b). We accelerate this by
offloading it to an NVIDIA AmgX (GPU) library.
This is achieved with the iso_c_binding module.

1. Define the C Interface In ftn c.£90, we 2. Call C from Fortran In mod_amgx.f90, we

define the C function’s prototype: pass Fortran data using c_loc:
module ftn_c module mod_amgx
interface use iso_c_binding, only: c_int, c_double, c_loc
integer (c_int) function solveamg(rhs, sol) & use ftn_c !/ Our interface module
bind(c, name='solveamg') .
use iso_c_binding contains
implicit none subroutine solve_amgx()
type (c_ptr), value :: rhs ! rhsv and sol are Fortran allocatables
type (c_ptr), value :: sol ! defined with 'target' attribute
end function solveamg real(c_double), allocatable, target :: rhsv(:)
end interface real(c_double), allocatable, target :: sol(:)

end module ftn_c e
! Pass the memory location to C
solve_am = solveamg(c_loc(rhsv), c_loc(sol))
end subroutine solve_amgx

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 10/ 14




Results: The Solver in Action

The resulting framework is robust, high-performance, and produces physically accurate results.

Demonstration: 3D Simulation

Simulation of an elliptical particle moving over an array of cilia.

Time: 1.740 s
5.0
3.4

o
01 3
-1.5
3.1
-4.8

0.0 2:5 5.0 75 10.0 12.5 15.0 17.5 20.0
X/L

Example Application: The framework can be used to generate data for machine learning
models to sense particle properties from cilia deflection alone (as shown in my PhD work).

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 11/14



Future Work: Coupling Fortran with OpenFOAM (C++)

The same iso_c_binding interoperability was used to couple our Fortran solid solver with the
C++-based OpenFOAM library, enabling full 3D simulations.

Demonstration

3D simulation of a deformable particle, computed with the coupled OpenFOAM-Fortran solver.

..‘—"“'.‘.

A simplified version of this solver is open-source:

https://github.com/divyaprakash-iitd/ciliaparticlefoam

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 12/14


https://github.com/divyaprakash-iitd/ciliaparticlefoam

Summary and Conclusions

We have successfully built a complex, multiphysics FSI solver for cilia and particles from
scratch.

Modern Fortran was the key enabler:
@ Modules provided a clean, decoupled architecture.

@ Derived Types and Type-Bound Procedures allowed us to create a clean,
object-oriented design that is readable and extensible.

e Polymorphism (‘class(solid)') enabled us to write generic, reusable coupling code (like
spread force).

@ iso_c_binding provided a seamless, high-performance path to GPU acceleration.

Main Message

Modern Fortran provides the performance of a low-level language with the high-level
abstractions needed to tackle complex, modern scientific challenges.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 13 /14



Thank You

Author: Advisor:

Divyaprakash Prof. Amitabh Bhattacharya
divyaprakash.poddar@gmail.com Department of Applied Mechanics
https://dpcfd.com Indian Institute of Technology Delhi, India

Code Repository:

https://github.com/divyaprakash-iitd/ibmc

Note: This is a similar, simplified version. The full repository will be open-sourced soon.

Questions?


https://dpcfd.com
https://github.com/divyaprakash-iitd/ibmc

