
Modern Fortran for Fluid–Structure Simulations
of Cilia and Particles

Divyaprakash

PhD Candidate
Indian Institute of Technology Delhi, India

FortranCon 2025



Motivation

Sensing and transporting particles using artificial cilia is a key challenge in microfluidics and
bio-engineering.

Biological inspiration (e.g., Ovum Transport)
Source: Web

Our Goal: To build a high-fidelity simulation
of this complex, multiphysics system.
This involves coupling:

Fluid: A 2D incompressible Navier-Stokes
solver.

Solids (Cilia): Modeled as flexible
Kirchhoff Rods.

Solids (Particles): Modeled using Finite
Elements (FEM).

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 1 / 14

https://glowing.com/community/topic/2164098/ectopic-pregnancy-is-not-your-fault-or-his-fault


Problem Statement

Develop computational models to understand and mimic cilia-particle interactions.

Computational Domain

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 2 / 14



The Computational Framework

We use the Immersed Boundary Method (IBM) to couple the Fluid and Solid solver

High-Level Solver Architecture

The Core Challenge: How do we build this entire system to be...

Maintainable: Cleanly separated code (fluid vs. solid).

Extensible: Easy to add new objects (e.g., capsules, different particles).

High-Performance: Fast enough for large-scale simulations.

Our Solution: A framework built entirely in Modern Fortran.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 3 / 14



Why Modern Fortran?

Fortran is more than just a ”number-crunching” language. Modern features allow for elegant,
robust, and maintainable software design.
We leverage five key features:

1 Modular Programming (MODULE)
For separation of concerns.

2 Object-Oriented Design (TYPE, CONTAINS)
To represent physical objects cleanly in code.

3 Powerful Array Syntax
Built-in matrix/array operations made translating our MATLAB prototype simple.

4 Dynamic Memory (ALLOCATABLE)
For flexible, runtime-defined problem sizes.

5 C Interoperability (ISO C BINDING)
For GPU acceleration and external libraries.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 4 / 14



Core Design: Modular Programming

Modules allow us to separate the code by its physical function: fluid, solids, coupling, I/O, etc.
The main program (ibmc.f90) simply composes these modules:

program ibmc
! --- Core Physics Modules ---
use mod_pressure, only: generate_laplacian_sparse_constant, ...
use mod_time, only: advection, diffusion, corrector, ...
use mod_boundary, only: apply_boundary_channel
use mod_ibm, only: spread_force, interpolate_velocity

! --- Object Definition Modules ---
use mod_mesh, only: mesh
use fem2d, only: festruct ! Particle type
use mod_cilia, only: cilium ! Cilium type

! --- Helper/External Modules ---
use mod_amgx, only: calculate_pressure_amgx ! GPU Solver
use mod_io, only: write_field, write_mesh

! ...

! --- Local variables declared here ... ---
type(mesh) :: M
type(cilium), allocatable :: cilia(:)
type(festruct), allocatable :: particles(:)
...

end program ibmc

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 5 / 14



Object-Oriented Design: Derived Types

We represent physical objects (cilia, particles) as Derived Types. This bundles data (e.g.,
position, force) with behavior (e.g., ‘calculate forces‘).

First, we define an abstract base type for all
solids (mod solid.f90):

1 module mod_solid
2 implicit none
3 type, abstract :: solid
4 ! ... (common data)
5 real(real64), allocatable :: XE(:,:) ! Coords
6 real(real64), allocatable :: fden(:,:) ! Force
7 real(real64), allocatable :: U(:,:) !

Velocity↪→
8 real(real64) :: dl
9 ! ...

10 end type solid
11 end module mod_solid

Then, Cilia and Particles extend this base type
and add their own specific logic
(mod cilia.f90):

module mod_cilia
use mod_krod ! Extends solid
implicit none

type, extends(krod) :: cilium
! --- Data ---
integer(int32) :: NV ! Num vertices
real(real64) :: K, B ! Stiffness
real(real64), allocatable :: Mom(:)

contains
! --- Behavior (Type-Bound Procs) ---
procedure :: forces
procedure :: moments
! ..

end type cilium
...

contains
elemental impure subroutine forces(self,...)

class(cilium), intent(inout) :: self
...

end subroutine forces
end module mod_cilia

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 6 / 14



High-Level Syntax & Compiler-Friendly Code

Fortran’s array-oriented nature extends to derived types, which was critical for moving from a
MATLAB prototype to efficient, compiled code.

1. Elemental Procedures We define our object
methods as elemental. This means the
subroutine is written to act on a scalar object
(self).

1 elemental impure subroutine forces(self, ftip)
2 class(cilium), intent(inout) :: self
3 real(real64), optional, intent(in) :: ftip
4 ! ...
5 end subroutine forces

2. High-Level Array Calls This allows us to
call the procedure on an entire array of objects
with a clean, MATLAB-like syntax.

! In main program (ibmc.f90)
type(cilium), allocatable :: cilia(:)
allocate(cilia(ncilia))
...
! This single line...
call cilia(:)%forces(ftip)

Why this is efficient

The elemental keyword is a powerful optimization flag. It explicitly states that the forces
calculation for one cilium is independent of all others. This gives the compiler permission to
automatically vectorize or parallelize the resulting loop, leading to significant performance gains.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 7 / 14



Polymorphism: Writing Generic Solvers

The Problem: Our coupling module (mod ibm) needs to spread force from different kinds of
objects (cilia, particles) to the fluid grid. We want to avoid writing duplicate code.

1. Inheritance: Create a Base Type First, we
define an abstract base type, solid, which
holds data common to all objects (like position
and force).

! In mod_solid.f90
module mod_solid

type, abstract :: solid
real(real64), allocatable :: XE(:,:) ! Coords
real(real64), allocatable :: fden(:,:) ! Force
real(real64), allocatable :: U(:,:) !

Velocity↪→
real(real64) :: dl
...

end type solid
end module mod_solid

Our objects then extend this base type.

! In fem2d.f90 (Particle)
type, extends(solid) :: festruct

...
end type festruct

! In mod_cilia.f90 (via mod_krod)
type, extends(krod) :: cilium

...
end type cilium

2. Polymorphism: Use CLASS The
spread force subroutine accepts
class(solid), not type(cilium) or
type(festruct).

! In mod_ibm.f90
subroutine spread_force(M, B, Fx, Fy)

class(mesh), intent(in) :: M

! This argument is POLYMORPHIC
class(solid), intent(in out) :: B(:)

real(real64), intent(in out) :: Fx(...), Fy(...)
...
! Accesses common 'solid' data
Lx = B(irod)%XE(inp,1)
Flx = B(irod)%fden(inp,1) * B(irod)%dl
...

end subroutine spread_force

This allows the same function to be called with
different object arrays

! In main program (ibmc.f90)
call spread_force(M, particles, Fx, Fy)
call spread_force(M, cilia, Fx, Fy)

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 8 / 14



The Payoff: A Clean Main Loop

The Object-Oriented design makes the main program (ibmc.f90) read like the algorithm,
hiding the complexity inside each object’s methods.

1 ! (Inside main loop...)
2

3 ! 1. Calculate internal forces for all solid objects
4 ! This is a "polymorphic" call on the object arrays
5 call particles(:)%calculate_forces()
6 call cilia(:)%forces(ftip)
7

8 ! 2. Spread forces from objects to the fluid grid (IBM)
9 Fx = 0.0d0; Fy = 0.0d0

10 ! Note: spread_force takes 'class(solid), allocatable :: B(:)'
11 call spread_force(M, particles, Fx, Fy)
12 call spread_force(M, cilia, Fx, Fy)
13

14 ! 3. Solve Fluid (Advection, Diffusion, Pressure-Project)
15 call advection(M,u,v,au,av)
16 ...
17 call calculate_pressure_amgx(A,P,R,init_status)
18 call corrector(M,u,v,us,vs,P,rho,dt)
19

20 ! 4. Interpolate fluid velocity back to objects
21 call cilia(:)%set_U(0.0d0)
22 call particles%set_velocity(0.0d0)
23 call interpolate_velocity(M,cilia,u,v)
24 call interpolate_velocity(M,particles,u,v)
25

26 ! 5. Update object positions using interpolated velocity
27 call cilia(:)%update(dt,1,1)
28 call particles(:)%update_position(dt)

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 9 / 14



Performance: Fortran-C Interoperability

The bottleneck is solving the pressure Poisson equation (Ax = b). We accelerate this by
offloading it to an NVIDIA AmgX (GPU) library.
This is achieved with the iso c binding module.

1. Define the C Interface In ftn c.f90, we
define the C function’s prototype:

1 module ftn_c
2 interface
3 integer (c_int) function solveamg(rhs, sol) &
4 bind(c, name='solveamg')
5 use iso_c_binding
6 implicit none
7 type (c_ptr), value :: rhs
8 type (c_ptr), value :: sol
9 end function solveamg

10 end interface
11 end module ftn_c

2. Call C from Fortran In mod amgx.f90, we
pass Fortran data using c loc:

module mod_amgx
use iso_c_binding, only: c_int, c_double, c_loc
use ftn_c ! Our interface module
...

contains
subroutine solve_amgx()

! rhsv and sol are Fortran allocatables
! defined with 'target' attribute
real(c_double), allocatable, target :: rhsv(:)
real(c_double), allocatable, target :: sol(:)
...
! Pass the memory location to C
solve_am = solveamg(c_loc(rhsv), c_loc(sol))

end subroutine solve_amgx
end module mod_amgx

Key Takeaway: We get the best of both worlds: high-level Fortran logic and low-level
C/GPU performance, with zero glue code.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 10 / 14



Results: The Solver in Action

The resulting framework is robust, high-performance, and produces physically accurate results.

Demonstration: 3D Simulation

Simulation of an elliptical particle moving over an array of cilia.

Example Application: The framework can be used to generate data for machine learning
models to sense particle properties from cilia deflection alone (as shown in my PhD work).

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 11 / 14



Future Work: Coupling Fortran with OpenFOAM (C++)

The same iso c binding interoperability was used to couple our Fortran solid solver with the
C++-based OpenFOAM library, enabling full 3D simulations.

Demonstration

3D simulation of a deformable particle, computed with the coupled OpenFOAM-Fortran solver.

A simplified version of this solver is open-source:

https://github.com/divyaprakash-iitd/ciliaparticlefoam

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 12 / 14

https://github.com/divyaprakash-iitd/ciliaparticlefoam


Summary and Conclusions

We have successfully built a complex, multiphysics FSI solver for cilia and particles from
scratch.
Modern Fortran was the key enabler:

Modules provided a clean, decoupled architecture.

Derived Types and Type-Bound Procedures allowed us to create a clean,
object-oriented design that is readable and extensible.

Polymorphism (‘class(solid)‘) enabled us to write generic, reusable coupling code (like
spread force).

iso c binding provided a seamless, high-performance path to GPU acceleration.

Main Message

Modern Fortran provides the performance of a low-level language with the high-level
abstractions needed to tackle complex, modern scientific challenges.

Divyaprakash Modern Fortran FSI Solver FortranCon 2025 13 / 14



Thank You

Author:

Divyaprakash
divyaprakash.poddar@gmail.com

https://dpcfd.com

Advisor:

Prof. Amitabh Bhattacharya
Department of Applied Mechanics
Indian Institute of Technology Delhi, India

Code Repository:

https://github.com/divyaprakash-iitd/ibmc

Note: This is a similar, simplified version. The full repository will be open-sourced soon.

Questions?

https://dpcfd.com
https://github.com/divyaprakash-iitd/ibmc

