SIMULATING
THE UNIVERSE

MY WISH LIST AFTER 25 YEARS OF FORTRAN DEVELOPMENT

> niversity

. Ad . , DANIEL J. PRICE
9 Australian Government ” A

RSk Australian Research Council MONASH UNIVERSITY, MELBOURNE, AUSTRALIA Université
‘ Grenoble Alpes

QUICK PLUG: ONLINE FORTRAN TUTORIALS

e It Vew Selction Find Mecagm Window MHe

2.2 A simple program

A" Daniel Price " Analytics) Edit video | 4> Share

1.01K subscribers

ﬂ Promote

33K views 5 years ago computational astrophysics tutorials
Part 1 of an introduction to programming in Fortran 90, given as part of our computational astrophysics course at Monash
University in Melbourne, Australia. Notes available from: hitps://users monash. edu.au/~dpric

voutube.com/@danielpriceastro
https://youtu.be/d ZNWPNzspg

http://youtube.com/@danielpriceastro
https://youtu.be/d_ZNWPNzspg

HOW TO SIMULATE THE UNIVERSE ?

SIMULATING THE UNIVERSE WITH SMOOTHED PARTICLE HYDRODYNAMICS
e.g. Lucy (1977), Monaghan & Gingold (1977), Monaghan (1992, 2005), Price (2012)

Grid Particles Hamiltonian hydrodynamics
. "
“ - s
/
g / /
. /
’ — - 4 Symrr;etries
. o — o q conservation
~— X _ v laws!

T

v Y P W)+ — W)
T L i) i\
p(X) = Z m;W(|x; —X;|, h) ds j _Qipiz Qp7
j

e.g. Gingold & Monaghan 1982; Monaghan & Price 2001; Monaghan
2002; Springel 2002; Price & Monaghan 2004b, 2007; Price 2012

o THE PHANTOM SMOOTHED PARTICLE HYDRODYNAMICS CODE Frice & Federath (2010):
w Lodato & Price (2010);

Price et al. (2018) and

. , | | | S many papers since
- Open source code for astrophysical fluid dynamics with SPH github.com/danieljprice/phantom

- ~100,000 lines of modern Fortran, codebase started from scratch in 2007, went public in 2017
- openMP and MPI parallelisation
- Lots of physics modules (magnetic fields, multi-species dust, chemical networks, GR, radiation etc.)

- Active user community (7 users workshops since 2018; five in Melbourne, two in Europe, one in Canada)

- Extensive unit testing framework

{ v 4 v
Lee Lee

__y Open _y Modular
Phantom is free to use, download and redistribute under the terms of the Phantom is built in small, re-usable modules, making it easy to add new
GPLv3 license, We also welcome contributions to the code via the GitHub physics to the code.
repo. Just get in touch!
_\ Modern _\ Lean
All modules are written in modern Fortran and we enforce strict adherence We strive for a low memory, high performance code with as few options as
to the very latest Fortran standards. possible. It should "just work". Phantom is not a code for testing
algorithms, It is a "take the best and make it run fast" production code for
astrophysical simulations.
_\ Tested .\ Re-useable
Phantom contains a comprehensive testsuite that runs on every pull We aim to never repeat code.

request before It Is merged to master. We strive to continually increase the
scope of the tests to cover every aspect of the code.

http://github.com/danieljprice/phantom

HOW TO VISUALISE RESULTS FROM SPH CODES

A(T) = Z %AjW(‘T — Tj‘, h) e.g. Gingold & Monaghan (1977)

ol

Discrete

github.com/danieljprice/splash

Continuum

.1 0.2 0.3

X

c.f. Price (2007), PASA, 24, 159

http://GitHub.com/danieljprice/uvsph

SPLASH - A VISUALISATION TOOL FOR SMOOTHED PARTICLE HYDRODYNAMICS

Price (2007)

SPLASH - A visualisation tool for smoothed particle hydrodynamics

- Open source code for SPH interpolation/visualisation github.com/danieljprice/splash

« ~90,000 lines of modern Fortran (mostly format readers!), original F77 codebase started in 2002

- Key requirement is remote visualisation, by interactive X-window sent over the network. This is
because fluid simulations generate large data files that are much easier to visualise in situ.

 Oiriginally used old FORTRAN-based PGPLOT graphics library, eventually rewrote our own
graphics library in C (github.com/danieljprice/giza) based on the Cairo drawing library.

- Being pure C, Giza is easily callable from Fortran, has few dependencies and integrates well
with system libraries

- Both codes used CVS version control in 2003, transitioned to SVN in 2009, transitioned to git/svn
and eventually pure git around 2016.

- openMP parallelisation of key routines

commit 9cB44239ffalda28ab33ffBce7031cd7c3eB8f6ab
Author: dprice <dprice>
Date: Mon Dec 15 13:12:46 2003 +0000

freeform source -> to .790

commit BB835dfcOe34B4al19636eaa7deb5406919d6949dd
Author: dprice <dprice>
Date: Mon Dec 15 12:47:083 2083 +0000

lower case

commit 932beébB12538FfFfd7d9604d733dafd1b48331F16
Author: dprice <dprice>
Date: Tue Dec 9 15:38:48 2003 +0000

power spectrum of 1D data (some bugs still)

commit ac3e2b2e93b3ec26a9324baddf4l1c973affb2244
Author: dprice <dprice>
Date: Mon Dec 8 21:11:58 2003 +0000

minor changes for spherical blast wave

commit deea7294091e525892871edB1cé958BeacBbBec7ff
Author: dprice <dprice>
Date: Mon Nov 24 21:29:46 2003 +0000

update

commit 7cccc73327daB4a%b4ecl6eB29d4cE2T1befed4?
Author: dprice <dprice>
Date: Mon Nov 24 21:08:52 2083 +0000

calc_quantities added, rhoh moved
commit 31215cc7f3fdd37f293d04c171aébe2273ad3cla

Author: dprice <dprice>
Date: Thu Oct 30 16:087:37 2003 +0000

fix bug when no data

commit 8002af961898d67721c1583d4e5d95b2862déd3c
Author: dprice <dprice>
Date: Wed Oct 22 14:41:02 2083 +0000

Initial revision

http://github.com/danieljprice/splash
http://github.com/danieljprice/giza

EXAMPLE: TIDAL DISRUPTION OF A STAR BY A SUPERMASSIVE BLACK HOLE

t=273 days

Price et al. (2024)
“Eddington envelopes: the
fate of stars on parabolic
orbits tidally disrupted by

supermassive black holes”,
Astrophysical Journal
Letters 971 , L46

| G0 20 4
Price et al. (2024) log column density [g/cm?]

Simulation with github.com/danieljprice/phantom; visualisation with github.com/danieljprice/splash

WHAT IS THE PROBLEM WITH COMPUTATIONAL WORK?

e Humans can type fast, but not usually accurately

e Physics modules typically developed “quickly” for one project tend to be reused by others for
years

e Codes maintained by individuals or small teams
e 99% of development time is spent debugging
e Bugs can really waste peoples lives

e This is why | started a fresh codebase and keep to modern standards, to allow the compiler
to debug as much as possible!

Stable smoothed particle magnetohydrodynamics in
very steep density gradients

(

N
log column density [g/cm?]

|
P4

ANSUA

MNRAS 464, 2499-2501 (2017) doi:10.1093/mnras/stw2474
Advance Access publication 2016 September 28

Erratum and Addendum: Smoothed particle magnetohydrodynamic
simulations of protostellar outflows with misaligned magnetic field and
rotation axes

| | N N |
Pla (27 380 yrs)

[

ROYAL ASTRONOMICAL NOCTETY
1 : . lyz* TA S CoEm A SR LA S szt s (aor st B

by Benjamin T. Lewis, MNRAS 468, 2714-2716 (2017) doi: 10.1093/maras/stw2940

' School of Physics and Astronomy, University of Advance Access publication 2016 November 14

! Monash Centre for Astrophysics, School of Mai

Erratum: Collapse of a molecular cloud core to stellar densities: stellar
core and outflow formation in radiation magnetohydrodynamics | |
collapse of a magnetised molecular cloud core of total mass 1 M with a

. -
A : ¢ m h models described in § IV, the stability and essentially identical evolution
: The paper Sannthes u«:l.c ma.g .(S UIanons tly explodes. Model Pla is the same as model P1, but with the h-averaging
tions of protostellar outflows with misalig

. -) g is timestep, it becomes unstable shortly after (as seen in the far-right plot on
rotation axes’ was published in MNRAS 45 1 . 2 .) omentum equation Eqn. (12) and, whilst significantly improved over PO, still
the Oxiginal Paper’), | by Matthew R. Bate,'* Terrence S. Tricco® and Daniel J. Price

The calculations presented in that work
Ot L e L s e L 1 e d DAL S Mgl G @l oy S Sy RORLAA] af Dhriakay mund A sodnasakiiis Flwivervedruy nf Fvoteayr Corivdor Poavvid Eveteov EYd 41 TNV

Key words: accretion, accretion discs

1 1 1 | L i 1 1

21

TEST-DRIVEN DEVELOPMENT

Test-driven development

Article Talk

From Wikipedia, the free encyclopedia

Test-driven development (TDD) is a way of writing code that involves writing
an automated unit-level test case that fails, then writing just enough code to
make the test pass, then refactoring both the test code and the production
code, then repeating with another new test case.

Alternative approaches to writing automated tests is to write all of the
production code before starting on the test code or to write all of the test code
before starting on the production code. With TsDD, both are written together,
therefore shortening debugging time necessities.! "

TDD is related to the test-first programming concepts of extreme
programming, begun in 1999,2! but more recently has created more general
interest in its own right.°!

Programmers also apply the concept to improving and debugging legacy code
developed with older techniques.!*

Write tests BEFORE writing the code

tryin

‘outl

aclh

Helps to frame the problem you are

g to solve, and define what a
ne or module Is supposed to

leve

Choice of testing “framework” is
unimportant, just has to return pass/fail
INn some way and count them (e.g. can

easl

Ily write a script to do this yourself)

—ven easier in GitHub actions workflows

UNIT TEST: SIMPLE EXAMPLE

subroutine test quartic(ntests,npass)
use quartic, only:quarticsolve,quarticf
integer, intent(inout) :: ntests,npass
real :: a(@:3),xold,x
integer :: ierr,nfail(2)
logical :: moresweep
real, parameter :: tol = 1l.e-6

if (id==master) write(x,"(/,a)") '==> checking x*4 = 16 gives x=2'

a = [-16.,0.,0.,0.]
xold = =2eb6

call quarticsolve(a,xold,x,moresweep,ierr)

call checkval(x,2.,tol,nfail(l), 'x=2")

call checkval(ierr,9,0,nfail(2), 'ierr=0")

call checkval(quarticf(a,x),0.,tol,nfail(l), " 'f(x)=0 for solution found')
call update_test _scores(ntests,nfail,npass)

if (id=master) write(x,"(/,a)") '=-> checking arbitrary quartic'

a = [—6|,2|,35,1|]

xold = 1.

call quarticsolve(a,xold,x,moresweep, ierr)

call checkval(quarticf(a,x),0.,tol,nfail(l), 'f(x)=0 for solution found')
call checkval(ierr,9,0,nfail(2), " 'ierr=0")

call update_test_scores(ntests,nfail,npass)

end subroutine test guartic

You perform these kinds
of tests naturally when

debugging, so the idea
'S Just to automate them

tIS S
tests

nocking how often

ke this fall

MY
FORTRAN
WISH LIST

THE GOOD

Modules are an excellent way to group related functionality
Fortran 90 was overall implemented very well

Code mirrors the maths (Formula Translation lives up to its name)
Easy to write code that runs fast

Fortran does package management perfectly: There is a good and intuitive standard library of
functions. Can program Fortran without having to constantly be on Stack Overflow

It's the right tool for a particular job: solving mathematical equations on the computer. Does this job well.

Backwards compatibility means that code still works 20 years later (with means to enforce
obsolescence if desired, but old code does not break by default)

Open source Fortran 90 compilers (gfortran) changed the game due to widespread availability, easy
installation via package managers and avoidance of headaches managing licences. Also these
compilers have continued to improve via community contributions.

Easy parallelisation with openMP (and MPI though not “easy”)
Compilers pick up most (but not all) of the errors, especially with bounds-checking

Interoperability with C in later standards is extremely useful

THE BAD

Precision-handling is a bit of a mess, e.g. typing 0.0_dp everywhere is ugly and error-prone.
My solution is to declare everything as default real and use -fdefault-real-8 -tdefault-double-8
(equivalent to -r8 which was always the standard flag for this but not in gfortran??)

End up constantly re-writing low-level modules for simple things (integrating a function,
inverting a matrix, cross product of two vectors) that should really be in the language

No obvious way to share modules between two projects except by copying the module over to
the other project. These two versions then diverge with time...

Dependencies are hard to manage properly in Maketiles (but make has the great advantage
of being simple, unlike cmake)

Cveryone invents their own file format, for both parameter files and binary code outputs.
—ortran namelists were a good idea, but no way to format the output nicely (e.g. as toml).
Depending on a giant library like hdf5 is also a mess, but would be simple if this was
supported natively.

Co-arrays are a great idea, but have not seen this feature used “in the wild” because
performance matters and easier for most people to write their own low-level MP| code. Shows
need to be led by user adoption of working libraries, not just putting things in the standards...

No native plotting/visualisation (see giza...)

input file for binary setup routines

units
mass_unit = solarm ! mass unit (e.g. solarm,jup
dist _unit solarr | distance unit (e.g. au,pc,

options for body 1
iprofilel

isoftcorel
input_profilel
outputfilenamel
rcorel

mcorel

Llcorel

npl

5 ! 8=Sink,1=Un1if,2=Poly,3=Den
p. ! @=no core softening, l=cub
profile9donor.data ! Path to input profi
mysoftenedstar.dat ! Output path for sof
10.0 ! Radius of core softening
9.5 ! Initial quess for mass of
0.*lsun ! Luminosity of point mass s
10000 ! number of particles

options for body 2
iprofile2
input_profile2
isoftcore2
isinkcore2

Lcore2

5 ! 8=Sink,1=Unif,2=Poly,3=Den
profileSaccretor.data ! Path to input pr
(%) ! @=no core softening, l=cub

F | Add a sink particle stella

0.*lsun ! Luminosity of sink core pa

THE UGLY

Libraries in Fortran are a mess because .mod format is compiler-dependent. My
solution is to write C code to interface with system libraries and call C from Fortran
(which is done well)

No sensible way to share modules with the world or for the community to
contribute libraries/modules to the language. Even within attempts at this (fpm)
module dependencies get tangled quite quickly. Hard to pull a module from one
code and use it in another.

It's easier to use Fortran libraries from Python than from Fortran!

Numpy shows all the additional commands that should be part of the core Fortran
language (e.qg. linspace, logspace, roll, etc). But Python package management is
also a nightmare that has taken many years to find good solutions for (conda,
virtual envs, etc)

L4
-
N 4

!

.
-

N

>
?L

- -

2.
V.) .

A (PARTIAL) WISH LIST

e (Greatly expanded standard library (NOT package management) that is required to be available in every
Fortran compiler. The library itselt should not have to be written by vendors. https://stdlib.fortran-lang.org/ is
a great effort in this direction (but I have no idea how to use it!). Versions of this should be pinned to the
language standard.

e Header files (e.g. from submodules) that are not compiler dependent. In practice | share the raw .f90 module
file containing the definitions to be compiled by the calling code.

e Package management like the fpm effort, but made available natively when installing gfortran or other
compilers. No need for separate installation. Package management should not be required for standard
libraries, and popular packages should be integrated into the language over time, unlike what happens Iin
Python (why do | have to import numpy as np just to take a sqrt?).

e Toml format for namelist input/output
e Native hdf5 support (or similar) for high level input/output of code snapshots

e Build on success of openMP, openACC integration in Fortran, need further support for hybrid CPU/GPU
parallelisation, similar to SYCL effort for C++

e |[t's a positive thing to have implementations ahead of the standard, some of the problems in Fortran have
arisen from trying to be too “top-down”

Huge thanks to everyone who has contributed to Fortran over the years
Comments and feedback welcome!

https://stdlib.fortran-lang.org/

