
S I M U L A T I N G

T H E U N I V E R S E
MY WISH L IST AFTER 25 YEARS OF FORTRAN DEVELOPMENT

DANIEL J . PR ICE

MONASH UNIVERSITY, MELBOURNE, AUSTRALIA

QUICK PLUG: ONLINE FORTRAN TUTORIALS

youtube.com/@danielpriceastro

https://youtu.be/d_ZNWPNzspg

http://youtube.com/@danielpriceastro
https://youtu.be/d_ZNWPNzspg

HOW TO SIMULATE THE UNIVERSE ?

<latexit sha1_base64="vqQdfjtxyBeXz01DkTBD9A3f+AI=">AAADFXicjVLLbtNAFB2bVwmPprDs5ooIFISIxlBIWFSqYMMySKStFEfReDJuRp2HNTOuFFne8BP8AlvYd4e67ZotX8L4wSNQpF7J0vG55545vp4kE9w6jL8F4ZWr167f2LjZuXX7zt3N7ta9fatzQ9mEaqHNYUIsE1yxieNOsMPMMCITwQ6S4zdV/+CEGcu1eu9WGZtJcqR4yilxnppvBdtxaggt4owYx4mA2Cx1+fvVlfAE+nEii5MypgvtIFYkEeRxLYRHsAtPa9Rv+FrTyL0k7qy7N43L2DdU4w+tSd2BsR+vMv7rDvmlgudt6nr2l9sF+Tvzbg8Png9Hw1cYPBgNo52XLcAYogGuq4faGs+73+OFprlkylFBrJ1GOHOzoopEBSs7cW5ZRugxOWJTDxWRzM6K+i+W8NAzC0i18Y9yULN/ThREWruSiVdK4pb2715FXtSb5i4dzQqustwxRZuD0tyvSEN1JWDBDaNOrDwg1HCfFeiS+O04f3HWTklkWS3l55fD/8H+s0H0YoDf7fT2Xrfr2UDb6AHqowgN0R56i8ZogmjwIfgUfA6+hB/D0/BreNZIw6CduY/WKjz/AR3s+sM=</latexit>

∂ρ

∂t
+ (v ·r)ρ = �ρ(r · v)

∂v

∂t
+ (v ·r)v = �

rP

ρ

∂u

∂t
+ (v ·r)u = �

P

ρ
(r · v)

m

V

SIMULATING THE UNIVERSE WITH SMOOTHED PARTICLE HYDRODYNAMICS

Grid Particles

e.g. Lucy (1977), Monaghan & Gingold (1977), Monaghan (1992, 2005), Price (2012)

ρ(x) = ∑
j

mjW(|xi − xj | , h)

Hamiltonian hydrodynamics

L = ∑
j

mj (
1

2
v2

j − uj)
du =

P

ρ2
dρ

∇ρi =
1

Ωi
∑

j

mj ∇Wij(hi)

d

dt (
∂L

∂v) −
∂L

∂r

= 0

dvi

dt
= − ∑

j

mj [Pi

Ωiρ
2
i

∇Wij(hi) +
Pj

Ωjρ
2
j

∇Wij(hj)]

+

+

+

=
dx

dt
= v

e.g. Gingold & Monaghan 1982; Monaghan & Price 2001; Monaghan

2002; Springel 2002; Price & Monaghan 2004b, 2007; Price 2012

Emmy Noether

or or

Symmetries
=

conservation
laws!

THE PHANTOM SMOOTHED PARTICLE HYDRODYNAMICS CODE
Price & Federrath (2010);

Lodato & Price (2010);

Price et al. (2018) and

many papers since
• Open source code for astrophysical fluid dynamics with SPH github.com/danieljprice/phantom

• ~100,000 lines of modern Fortran, codebase started from scratch in 2007, went public in 2017

• openMP and MPI parallelisation

• Lots of physics modules (magnetic fields, multi-species dust, chemical networks, GR, radiation etc.)

• Active user community (7 users workshops since 2018; five in Melbourne, two in Europe, one in Canada)

• Extensive unit testing framework

http://github.com/danieljprice/phantom

HOW TO VISUALISE RESULTS FROM SPH CODES

Credit: blah

github.com/danieljprice/splash

Discrete

Continuum

<latexit sha1_base64="ztDjpsO9l24Jneox4QdPP69vZJg=">AAACXXicbVHLSgMxFE3HR2utWnXhwk1QhApaZgTRjdDqRhdCBWsFp5RMmrGxycyQ3BHLMF/hp/g1BUHQr3Bnpu2iVi+EHM49J9x74kWCa7DtYc6am19YzBeWisulldW18vrGnQ5jRVmThiJU9x7RTPCANYGDYPeRYkR6grW8/kXWbz0zpXkY3MIgYm1JHgPuc0rAUJ3ydb3iejJR6T4+w66OZecJu74iNDEoTVzVC82N64ZuVVzzEuCxHh9OQGbI+APc2++Ud+2qPSr8FzgTsFu7en2v5VulRqf87XZDGksWABVE6wfHjqCdEAWcCpYW3ViziNA+eWQPBgZEMt1ORmuneM8wXeyHypwA8IiddiREaj2QnlFKAj0928vIf3ueTIt700QmiUC+zAwE/mk74UEUAwvoeB4/FhhCnEWNu1wxCmJgAKGKm5Uw7RGTLZgPKZqsnNlk/oK7o6pzXLVvTGjnaFwFtI12UAU56ATV0CVqoCai6A0N0Sf6yn1YC1bJWh1LrdzEs4l+lbX1A+x8udw=</latexit>

A(r) =
X

j

mj

ρj

AjW (|r − rj |, h) e.g. Gingold & Monaghan (1977)

c.f. Price (2007), PASA, 24, 159

http://GitHub.com/danieljprice/uvsph

SPLASH - A VISUALISATION TOOL FOR SMOOTHED PARTICLE HYDRODYNAMICS

Price (2007)

• Open source code for SPH interpolation/visualisation github.com/danieljprice/splash

• ~90,000 lines of modern Fortran (mostly format readers!), original F77 codebase started in 2002

• Key requirement is remote visualisation, by interactive X-window sent over the network. This is

because fluid simulations generate large data files that are much easier to visualise in situ.

• Originally used old FORTRAN-based PGPLOT graphics library, eventually rewrote our own

graphics library in C (github.com/danieljprice/giza) based on the Cairo drawing library.

• Being pure C, Giza is easily callable from Fortran, has few dependencies and integrates well

with system libraries

• Both codes used CVS version control in 2003, transitioned to SVN in 2009, transitioned to git/svn

and eventually pure git around 2016.

• openMP parallelisation of key routines

http://github.com/danieljprice/splash
http://github.com/danieljprice/giza

EXAMPLE: TIDAL DISRUPTION OF A STAR BY A SUPERMASSIVE BLACK HOLE

Simulation with github.com/danieljprice/phantom; visualisation with github.com/danieljprice/splash

Price et al. (2024)

Price et al. (2024)

“Eddington envelopes: the

fate of stars on parabolic

orbits tidally disrupted by

supermassive black holes”,

Astrophysical Journal

Letters 971 , L46

WHAT IS THE PROBLEM WITH COMPUTATIONAL WORK?

• Humans can type fast, but not usually accurately

• Physics modules typically developed “quickly” for one project tend to be reused by others for
years

• Codes maintained by individuals or small teams

• 99% of development time is spent debugging

• Bugs can really waste peoples lives

• This is why I started a fresh codebase and keep to modern standards, to allow the compiler
to debug as much as possible!

TEST-DRIVEN DEVELOPMENT

• Write tests BEFORE writing the code

• Helps to frame the problem you are

trying to solve, and define what a

routine or module is supposed to

achieve

• Choice of testing “framework” is

unimportant, just has to return pass/fail

in some way and count them (e.g. can

easily write a script to do this yourself)

• Even easier in GitHub actions workflows

UNIT TEST: SIMPLE EXAMPLE

• You perform these kinds

of tests naturally when

debugging, so the idea

is just to automate them

• It is shocking how often

tests like this fail

M Y

F O R T R A N

W I S H L I S T

THE GOOD

• Modules are an excellent way to group related functionality

• Fortran 90 was overall implemented very well

• Code mirrors the maths (Formula Translation lives up to its name)

• Easy to write code that runs fast

• Fortran does package management perfectly: There is a good and intuitive standard library of

functions. Can program Fortran without having to constantly be on Stack Overflow

• It’s the right tool for a particular job: solving mathematical equations on the computer. Does this job well.

• Backwards compatibility means that code still works 20 years later (with means to enforce

obsolescence if desired, but old code does not break by default)

• Open source Fortran 90 compilers (gfortran) changed the game due to widespread availability, easy

installation via package managers and avoidance of headaches managing licences. Also these

compilers have continued to improve via community contributions.

• Easy parallelisation with openMP (and MPI though not “easy”)

• Compilers pick up most (but not all) of the errors, especially with bounds-checking

• Interoperability with C in later standards is extremely useful

THE BAD

• Precision-handling is a bit of a mess, e.g. typing 0.0_dp everywhere is ugly and error-prone.

My solution is to declare everything as default real and use -fdefault-real-8 -fdefault-double-8

(equivalent to -r8 which was always the standard flag for this but not in gfortran??)

• End up constantly re-writing low-level modules for simple things (integrating a function,

inverting a matrix, cross product of two vectors) that should really be in the language

• No obvious way to share modules between two projects except by copying the module over to

the other project. These two versions then diverge with time…

• Dependencies are hard to manage properly in Makefiles (but make has the great advantage

of being simple, unlike cmake)

• Everyone invents their own file format, for both parameter files and binary code outputs.

Fortran namelists were a good idea, but no way to format the output nicely (e.g. as toml).

Depending on a giant library like hdf5 is also a mess, but would be simple if this was

supported natively.

• Co-arrays are a great idea, but have not seen this feature used “in the wild” because

performance matters and easier for most people to write their own low-level MPI code. Shows

need to be led by user adoption of working libraries, not just putting things in the standards…

• No native plotting/visualisation (see giza…)

THE UGLY

• Libraries in Fortran are a mess because .mod format is compiler-dependent. My
solution is to write C code to interface with system libraries and call C from Fortran
(which is done well)

• No sensible way to share modules with the world or for the community to
contribute libraries/modules to the language. Even within attempts at this (fpm)
module dependencies get tangled quite quickly. Hard to pull a module from one
code and use it in another.

• It’s easier to use Fortran libraries from Python than from Fortran!

• Numpy shows all the additional commands that should be part of the core Fortran
language (e.g. linspace, logspace, roll, etc). But Python package management is
also a nightmare that has taken many years to find good solutions for (conda,
virtual envs, etc)

A (PARTIAL) WISH LIST

• Greatly expanded standard library (NOT package management) that is required to be available in every

Fortran compiler. The library itself should not have to be written by vendors. https://stdlib.fortran-lang.org/ is

a great effort in this direction (but I have no idea how to use it!). Versions of this should be pinned to the

language standard.

• Header files (e.g. from submodules) that are not compiler dependent. In practice I share the raw .f90 module

file containing the definitions to be compiled by the calling code.

• Package management like the fpm effort, but made available natively when installing gfortran or other

compilers. No need for separate installation. Package management should not be required for standard

libraries, and popular packages should be integrated into the language over time, unlike what happens in

Python (why do I have to import numpy as np just to take a sqrt?).

• Toml format for namelist input/output

• Native hdf5 support (or similar) for high level input/output of code snapshots

• Build on success of openMP, openACC integration in Fortran, need further support for hybrid CPU/GPU

parallelisation, similar to SYCL effort for C++

• It’s a positive thing to have implementations ahead of the standard, some of the problems in Fortran have

arisen from trying to be too “top-down”

Huge thanks to everyone who has contributed to Fortran over the years

Comments and feedback welcome!

https://stdlib.fortran-lang.org/

