
Status of gfortran, the gcc fortran compiler
Paul Thomas for the gfortran contributors1]

pault@gcc.gnu.org

1] https://gcc.gnu.org/onlinedocs/gcc/Contributors.html identifies all the gfortran
contributors. Authors of gfortran ChangeLog entries in 2025 are:

H Anlauf, P-A Arras , R Biener, J Brown, T Burnus, J Delisle, D Kochergin, M Jambor, J
Jelinek, S Kargl, T Koenig, S Loosemore, H Lu, Y Ma, D Malcolm, J Melcr, M Mohite, M
Morin, A Pinski, D Rouson, T Schwinge, P Thomas, T Trnka, A Vehreschild, M Vollweiler,
M Wielaard and K Yeung

Credit should also be given to the bug reporters (especially those that prepare small
reproducers and post to gcc Bugzilla ☺)

Introduction
• The purpose of the GNU Fortran (GFortran) project is to develop the Fortran

compiler front end and run-time libraries for GCC, the GNU Compiler
Collection.

• The gfortran is compliant with Fortran 95 and includes legacy F77 support.
• Most F2003 and F2008 plus an increasing number of F2018 and F2023

features are implemented.
• Of particular importance are the support for OMP and coarrays to support

parallel computation.
• See the gfortran wiki for more details: https://gcc.gnu.org/wiki/Gfortran.

• The presentation will describe the status of implementation of the new or
modified features of each of the newer standards, parallel processing and
single processor performance.

https://gcc.gnu.org/wiki/Gfortran

The gfortran “front end”
• The gfortran “front end” is, in principle, written in C++. However, only small snippets of

C++ have crept in and, for the main part, it is written in Kerighan and Ritchie C.

• The front end has three main stages:
1. A single pass parser that converts the fortran source into an intermediate representation;

2. A resolution stage, which includes some optimisation passes. The resulting intermediate

representation code can be exposed using the compiler option –fdump-parse-tree; and

3. A translation stage, where the intermediate representation is converted to TREE-SSA use by

the gcc infrastructure to produce executable code. The translation output can be exposed with

the compiler option –fdump-tree-original. The output appears in a file with the suffix *.original

and looks distinctly C-like.

• While the front end code is syntactically straightforward, the single pass compiler,

legacy support and complexity of the fortran language from F2003 onwards have

caused significant bloat.

Standards compliance
• The following slides are based on the tables to be found in the gfortran wiki.

• The wiki entries are tabulated as in the sections/subsections of John Reid’s “The new
features of Fortran 20xx”.

• I have concentrated on those areas in where considerable progress has been made in
the development version gfortran-16.0.0 and should appear in the 2026 release.

• Additionally conditional expressions and unsigned integers (-funsigned) have been
implemented.

• A

F2003 compliance
ISO TRs

15580: IEEE Arithmetic Yes (since 5.0)

15581: Allocatable Enhancements Yes (since 4.2)

Data enhancements and object orientation

Parameterized derived types Yes (since 8.0, 2017-09-09), bugs PR82173

Procedure pointers Yes (partial since 4.4, components since 4.5)

Finalization Yes (since 4.9: PR37336 3 bugs left)

Procedures bound by name to a type Yes (partial since 4.4, 2008-08-31)

The PASS attribute Yes (since 4.5, 2009-07-25)

Procedures bound to a type as operators Yes (since 4.5, 2009-08-27)

Type extension Yes (since 4.4, 2008-07-29)

Overriding a type-bound procedure Yes (since 4.4, 2008-08-28)

Enumerations Yes (since 4.1)

ASSOCIATE construct Yes (since 4.6: PR87477 3 bugs left)

Polymorphic entities Yes (partial since 4.5, arrays since 4.7, unlimited since 4.8)

SELECT TYPE construct Yes (since 4.5, 2009-11-30)

Deferred bindings and abstract types Yes (since 4.4, 2008-09-02; deferred binding since 2009-03-29)

Allocatable scalars Yes (since 4.5, 2009-09-30)

Allocatable character length Yes (since 4.6, as components since 4.9, bugs: PR68241)

Your’s truly made a mess of the

original PDT implementation 

2025 PDT campaign has reduced

number of (known) bugs by 24, of

which 11 were found during the

campaign. 11 to go…..

Work on the associate construct

was funded by an STF grant
(sovereign.tech/de/tech/gfortran)

Otherwise F2003 coverage is in

good shape.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82173
https://gcc.gnu.org/wiki/ProcedurePointers
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37336
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87477
https://gcc.gnu.org/wiki/OOP
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68241

F2018 compliance (ii)
Additional parallel features in Fortran (TS

18508)

Teams Yes (partial 6.0 - complete 16.0)

Image failure Yes (in 16.0)

Form team statement Yes (in 16.0)

Change team construct Yes (in 16.0)

Coarrays allocated in teams Yes (in 16.0)

Critical construct Yes (in 16.0)

Lock and unlock statements Yes (in 16.0)

Events Yes (since 6.0)

Sync team statement Yes (in 16.0)

Image selectors Yes (in 16.0)

Procedure calls and teams No

Intrinsic functions get_team and team_number Yes (in 16.0)

Intrinsic function image_index Yes (in 16.0)

Intrinsic function num_images Yes (in 16.0)

Intrinsic function this_image Yes (in 16.0)

Intrinsic function move_alloc Yes (in 16.0)

Fail image statement Yes (since 7.0)

Detecting failed and stopped images Yes (since 7.0)

Collective subroutines Yes (since 5.0)

New and enhanced atomic subroutines Yes (since 5.0)

Failed images and stat= specifiers Yes (in 16.0)

The coarray features added in the

current development branch,

16.0.0, were developed by Andre

Vehreschild.

This work was funded by an STF

grant (sovereign.tech/de/tech/gfortran)

Of the rest of the features

introduced in F2018, “Further

interoperability of Fortran with C

(TS 29113) is in good shape” and

the wiki entries for the other

features appear to be in need of

updating.

https://gcc.gnu.org/wiki/TS29113Status

Coarrays

• GNU Fortran currently supports three coarray modes, which can be

selected via the -fcoarray= flag:

• none: The default, which prints an error when a coarray construct is

encountered

• single: Optimized version for a single image, which allows for fast

serial programs

• lib: A communication-library-based coarray version; either MPI or

GASNet.

• A shared-memory version is under development.

• See https://gcc.gnu.org/wiki/CoarrayLib for details.

https://gcc.gnu.org/wiki/Coarray
https://gcc.gnu.org/wiki/CoarrayLib

Open MP and GCC

• GNU Fortran implements all of the OpenMP Application Program Interface

v4.5, and many features from later versions of the OpenMP specification.

See OpenMP Implementation Status in GNU Offloading and Multi

Processing Runtime Library, for more details about currently supported

OpenMP features.

• To enable the processing of the OpenMP directive !$omp in free-form

source code; the c$omp, *$omp and !$omp directives in fixed form; the !$

conditional compilation sentinels in free form; and the c$, *$ and !$

sentinels in fixed form, gfortran needs to be invoked with the -fopenmp

option. This option also arranges for automatic linking of the OpenMP

runtime library. See GNU Offloading and Multi Processing Runtime Library.

• See: https://gcc.gnu.org/onlinedocs/gfortran/OpenMP.html for details.

https://gcc.gnu.org/onlinedocs/gfortran/OpenMP.html

Polyhedron Fortran Testsuite https://fortran.uk/

No recent, published results that I could

find.

Did some runs with

• gfortran 15.2.1

• ifx 2025.3.0

• flang 21.1.4

The purpose of these runs was not to

compare the compilers but to uncover

relative changes in gfortran since version

7.4.

gfortran

15.2.1

ifx

2025.3.0

flang

21.1.4

ac 4.8 3.7 4.3

aermod 2.6 3.3 3.0

air 1.2 1.2 1.4

capaci 5.0 6.61] 7.6

channe 38.9 38.8 38.6

doduc 4.3 4.2 4.3

fatigu 31.4 34.8 30.0

gas_dy 31.5 19.2 Seg fault2]

induct 16.4 12.1 22.6

linpk 2.0 2.0 1.9

mdbx 3.5 3.2 3.5

mp_pro 56.7 17.3 29.4

nf 4.0 4.31] 4.0

protei 8.3 8.4 7.8

rnflow 11.5 7.9 Seg fault3]

test_f 23.8 18 15.9

tft2 14.2 18.3 17.9

Geo mean 9.7 na na

• Tests run on Core I9-12900HKx20 with

32Gbytes

• Fedora Linux 43 (Work Station Edition)

• All runs with –O3 and no fast math

• Algorithm in rnflow.f90(function genui)

replaced by “call random_number

(genui)”.

1] Segfault in libcp required use of –heap-

arrays 4000000 for run.
2] Incompatible dummy data object shape in

subroutine ‘KEEL’ causes segfault.
3] Segfault. gdb reveals location as line 3430

and “error reading variable: value requires

524288 bytes which is more than max-value-

size”.

Polyhedron fortran testsuite runs 31/10/25

The gfortran maintainers/developers tend either to be fortran users, gcc maintainers or

working under contract, typically funded by governmental grants.

Many contributors from previous years not mentioned here. The same is also true of

financial contributions.

Even though the volunteer, fortran users are in the minority in the contributor list, their

presence over the years has given rise to an ethos that appears to be discouraging of

financial support. This is far from being the case, although the terms of the GPL have to

be heeded.

If you hit a problem with gfortran, please feel free to try to fix it yourself and contribute to

the gfortran mailing list. Given that this is a minority taste ☺, please submit problem

reports to Bugzilla, preferably with a reduced testcase.

Final Remarks

	Slide 1: Status of gfortran, the gcc fortran compiler Paul Thomas for the gfortran contributors1] pault@gcc.gnu.org
	Slide 2: Introduction
	Slide 3: The gfortran “front end”
	Slide 4: Standards compliance
	Slide 5: F2003 compliance
	Slide 6: F2018 compliance (ii)
	Slide 7: Coarrays
	Slide 8: Open MP and GCC
	Slide 9: Polyhedron Fortran Testsuite https://fortran.uk/
	Slide 10: Polyhedron fortran testsuite runs 31/10/25
	Slide 11: Final Remarks

